Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thanh Tịnh
Xem chi tiết
Nguyen Ngoc Minh Ha
1 tháng 7 2016 lúc 19:25

Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này

Ngô Hạnh Dung
Xem chi tiết
Phùng Gia Bảo
24 tháng 3 2020 lúc 19:21

Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1

Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố

Do đó trong ba p, q, r số phải có là 3

\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)

\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)

Vậy...

Khách vãng lai đã xóa
NGUYỄN VIỆT HOÀNG
9 tháng 11 lúc 20:18

đề sai

Nguyễn  Chí Hào
Xem chi tiết
Phạm Hoàng Tuấn Anh
26 tháng 1 2021 lúc 23:09

vì x^y+y^x sẽ là hai vế giống nhau về kết quả
ta có x = 2 ,y = 4

==> 2^4 + 4^2 = z (z là kết quả)

=16 +16 = 32

==> x = 2 ,y=4 ,z =32

Khách vãng lai đã xóa
shunnokeshi
Xem chi tiết
Phạm Cẩm Tú
Xem chi tiết
I - Vy Nguyễn
24 tháng 2 2020 lúc 23:53

  Từ  : 

   \(x^3+y^3+z^3=x+y+z+2017\)  \(\implies\)  \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)

Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)

\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)

\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)

Vì x, y, z  là các số nguyên nên

\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3

Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3

 Vậy không có số nguyên x,y,z nào thỏa mãn ycbt

Khách vãng lai đã xóa
phạm minh khôi
Xem chi tiết
phạm minh khôi
21 tháng 3 2017 lúc 21:24

các bạn giai jùm mình nha 

đúng mình k cho

Hà Nguyệt Anh
Xem chi tiết
Nguyễn Thị Hoàng Linh
Xem chi tiết
Hoang My
Xem chi tiết
Tiểu Dật Ninh
19 tháng 9 2023 lúc 10:40

\(x\) = 2; \(y\) = 2; \(z\) = 5.