Dùng phản chứng hoặc qui nạp, chứng minh rằng: 2008^2012 + 2009^2012 < 2010^2012
Cho M=3^2012-3^2011+3^2010-3^2009+3^2008 \(M=3^{2012}-2^{2011}+3^{2010}-3^{2009}+3^{2008}\)
Chứng minh rằng M chia hết cho 10
Chứng minh rằng
M=20112007+20112008+20112009+20112010+20112011+20112012 chia hết cho 2012
x-2012/2008-x-2012/2009=x-2012/2010-x-2012/2011.tìm x
a/Tính tổng
M=1/5^0+1/5^1+1/5^2+...+1/5^2012
b/Chứng minh rằng 2012^2013-1 và 2012^2013+1 không cùng là số nguyên tố
c/Chứng minh rằng 2+2^2+2^3+...+2^2009+2^2010 chia hết cho 42
a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011
4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)
= 5-1/5^2012
=> M = (5 - 1/5^2012)/4
Tk mk nha
Bài 10 Cho P = 2009/2010+2010/2011+2012/2013+2013/2009 chứng tỏ rằng P>5
10.
Sửa lại đề :Cho \(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\).Chứng tỏ rằng P<5.
\(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\)
\(P=\dfrac{2011}{2012}\)
\(\Rightarrow P< 5\)
M = 2012 + 20122 + ... + 20122010
= ( 2012 + 20122 ) + ... + ( 20122009 + 20122010 )
= 2012( 1 + 2012 ) + ... + 20122009( 1 + 2012 )
= 2012.2013 + ... + 20122009.2013
= 2013( 2012 + ... + 20122009 ) chia hết cho 2013
hay M chia hết cho 2013 ( đpcm )
Cho x=2011.Tính GTBT:
A= \(x^{2011}-2012.x^{2010}+2012.x^{2009}-2012.x^{2008}+...-2012.x^2+2012.x-1^{ }\)
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
Thay 2012=x+1.
\(A=x^{2011}-\left(x+1\right)x^{2010}+\left(x+1\right)x^{2009}-\left(x+1\right)x^{2008}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(A=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^3-x^2+x^2+x-1\)
\(A=x-1=2011-1=2010\)
Chứng minh rằng: A= 2010/2011+2011/2012+2012/2010 > 3
Lời giải:
$A=1-\frac{1}{2011}+1-\frac{1}{2012}+1+\frac{2}{2010}$
$=3+(\frac{1}{2010}-\frac{1}{2011})+(\frac{1}{2010}-\frac{1}{2012})$
$> 3+0+0+0=3$
Ta có đpcm.
Cho A= 10^2012 + 10^2011 + 10^2010 + 10^2009 + 8 . Chứng minh rằng A chia hết cho 24