tìm x: 1 + 4^1 + 4^2 + 4^3 + ..... + 4^2004 = 3 x (4^x - 1)
tìm x: 1 + 4^1 + 4^2 + 4^3 + ..... + 4^2004 = 3 x (4^x - 1)
Tính nhanh;
( 1- 1/2 ) x ( 1 - 1/3 ) x ( 1- 1/4 ) x ( 1 - 1/5 ) x......x ( 1 - 1 / 2003 ) x ( 1 - 1/ 2004 )
Tìm x
1 / 2 x X - 3 /4 = 5/6
1) =1/2 x 2/3 x 3/4 x 4/5 x .... x 2002/2003 x 2003/2004
=1/2004
2) 1/2 x X-3/4=5/6
1/2 x X =3/4+5/6
1/2 x X =19/12
X=19/6
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2002}{2003}.\frac{2003}{2004}\)
\(=\frac{1.2.3...2002.2003}{2.3.4...2003.2004}=\frac{1}{2004}\)
\(\frac{1}{2}.x-\frac{3}{4}=\frac{5}{6}\)
\(\frac{1}{2}.x=\frac{5}{6}+\frac{3}{4}\)
\(\frac{1}{2}.x=\frac{10}{12}+\frac{9}{12}=\frac{19}{12}\)
\(x=\frac{19}{12}:\frac{1}{2}\)
\(x=\frac{19}{12}.2=\frac{19}{6}\)
(1-1/2) x (1-1/3) x (1-1/4) x...x (1-1/2004)
=1/2 x 2/3 x 3/4 x ... x 2002/2003 x 2003/2004 = 1/2004
1/2 x X -3/4 = 5/6
=> 1/2 x X = 5/6 +3/4 = 19/12
=> x= 19/12 : 1/2
=> x=19/6
Tìm số hữu tỉ x biết
a) (x-3)/5=6-(1/3)+[(1/3)*x]
b)[(1/2)*x]-(1/3)-5=[3-2x+7)]/4
c) [(7x)/8]-5x+45=(10/3)*x+1/4
d) [(4-x)/2007]=(7-x/2004)-(9-x/2002)-1
Tìm x biết :
a. x-1/2015+x-2/2014=x-3/2013+x-4/2012
b.x-1/2004+x-2/2003-x-3/2002=x-4/2001
d.|5x-3|> hoặc = 7
a) \(\frac{x-1}{2015}+\frac{x-2}{2014}=\frac{x-3}{2013}+\frac{x-4}{2012}\)
\(\Rightarrow\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)=\left(\frac{x-3}{2013}-1\right)+\left(\frac{x-4}{2012}-1\right)\)
\(\Rightarrow\frac{x-2016}{2015}+\frac{x-2016}{2014}=\frac{x-2016}{2013}+\frac{x-2016}{2012}\)
\(\Rightarrow\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
\(\Rightarrow\left(x-2016\right).\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\Rightarrow x-2016=0\)
\(\Rightarrow x=2016\)
b) \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
\(\Rightarrow\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}-\frac{x-4}{2001}=0\)
\(\Rightarrow\left(\frac{x-1}{2004}-1\right)+\left(\frac{x-2}{2003}-1\right)-\left(\frac{x-3}{2002}-1\right)-\left(\frac{x-4}{2001}-1\right)=0\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
\(\Rightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
vì \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\Rightarrow x-2005=0\)
\(\Rightarrow x=2005\)
c) \(|5x-3|\ge7\)
\(\Rightarrow5x-3\ge7\) hoặc - (5x-3) \(\ge7\)
\(\Rightarrow5x-3\ge7\) hoặc \(-5x+3\ge7\)
\(\Rightarrow5x\ge10\) hoặc \(-5x\ge4\)
\(\Rightarrow x\ge2\) hoặc \(x\le\frac{4}{-5}\)
k nhé!!! Kp luôn nha!
A= ( 6 : 3/5 - 1 1/6 x 6/7 ) : ( 4 1/5 x 10/11 + 5 2/11 )
B= ( 1 - 1/2 ) x ( 1- 1/4 ) x ... x ( 1 - 1/2003 ) x ( 1 - 1/2004 )
C= 5 9/10 : 3/2 - ( 2 1/3 x 4 1/2 - 2 x 2 1/3 ) : 7/4
Giúp mình nhanh nha! Mình sẽ thick người đó
Bài 1: Cho A = 1+1/2+1/3+.....+1/2^(10-1)
Chứng tỏ A <10
Bài 2: Tìm chữ số tận cùng X, Y
X= 2^2 + 3^6 + 4^10+.....+ 2004^8010
Y= 2^8 + 3^12 + 4^16+ ....+ 2004^8016
\(\text{Ta có:}2;6;10;...;8010\text{ đều chia 4 dư 2}\)
\(\Rightarrow X\equiv2^2+3^2+4^2+....+2004^2\left(mod\text{ }10\right)\)
\(\text{ mà:}1^2+2^2+3^2+....+2004^2=\frac{2004.2005.4009}{6}=333.2005.4009\)
\(\Rightarrow X\equiv333.2005.4009-1\left(\text{mod 10}\right)\equiv3.5.9-1\equiv4\left(\text{mod 10}\right)\)
Vậy X có chữ số tận cùng là 4
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2^{10}-1}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+\left(\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}\right)+..........\left(\frac{1}{2^9}+\frac{1}{2^9}+....+\frac{1}{2^9}\left(\text{512 số hạng }\frac{1}{2^9}\right)\right)\)
\(=1+1+1+1+1+1+1+1+1+1\)
\(=10\left(\text{điều phải chứng minh}\right)\)
\(\text{bài 2 câu b tương tự câu a}\)
câu 2 mình chưa hiểu lắm bạn có thể giải thích cho mình được không ạ? Mình cảm ơn ạ ^^
1. tìm x biết :
x+4/2001+x+3/2002=-x+2/2003+x+1/2004
x+4/2001+x+3/2002=-x+2/2003+x+1/2004
x=...
\(\frac{x+4}{2001}+\frac{x+3}{2002}=\frac{x+2}{2003}+\frac{x+1}{2004}\)
\(\Leftrightarrow\left(\frac{x+4}{2001}+1\right)+\left(\frac{x+3}{2002}+1\right)=\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+1}{2004}+1\right)\)
\(\Leftrightarrow\frac{x+2005}{2001}+\frac{x+2005}{2002}=\frac{x+2005}{2003}+\frac{x+2005}{2004}\)
\(\Leftrightarrow\frac{x+2005}{2001}+\frac{x+2005}{2002}-\frac{x+2005}{2003}-\frac{x+2005}{2004}=0\)
\(\Leftrightarrow\left(x+2005\right).\left(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right)=0\)
Vì \(\left(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=0-2004=-2004\)
Tìm x biết: (x-1/2004)+(x-2/2003)-(x-3/2002)=x-4/2001
\(\left(x-\frac{1}{2004}\right)+\left(x-\frac{2}{2003}\right)-\left(x-\frac{3}{2002}\right)=x-\frac{4}{2001}\)
\(x-\frac{1}{2004}+x-\frac{2}{2003}-x+\frac{3}{2002}-x=-\frac{4}{2001}\)
\(x+x-x-x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(0x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(\Rightarrow\) Vô lý
Vậy \(x\in\phi\)
tìm x : x-1/2004+x-2/2003=x-3/2002+x-4/2001
\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
\(\Rightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}=\frac{x-2005}{2002}+\frac{x-2005}{2001}\)
\(\Rightarrow\frac{x-2005}{2001}+\frac{x-2005}{2002}-\frac{x-2005}{2003}-\frac{x-2005}{2004}=0\)
\(\Rightarrow\left(x-2005\right).\left(\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
Vì \(\frac{1}{2001}>\frac{1}{2003};\frac{1}{2002}>\frac{1}{2004}\)
\(\Rightarrow\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\)
\(\Rightarrow x-2005=0\)
\(\Rightarrow x=2005\)