Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mình đổi tên nick này cò...
Xem chi tiết
SKT_ Lạnh _ Lùng
1 tháng 5 2016 lúc 18:37

3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3

= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)[(n + 2) - (n -1)]

= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)

= n(n + 1)(n + 2)

=> S N(N+1)(n+2)/3

 mk nhanh nhat nhat  ban !!! 

Hoàng Thị Thu Huyền
1 tháng 5 2016 lúc 18:38

ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:

gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2

a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3

a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4

an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n

an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)

cộng các vế đẳng thức trên ta có:

3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1) =>3(a1+a2+...+an-1+an)=n(n+1)(n+2)

mà A=a1+a2+...+an-1+an nên 

\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

mình đổi tên nick này cò...
1 tháng 5 2016 lúc 18:39

bái phục @_@

Nguyễn Thị Phương Linh
Xem chi tiết
Phước Lộc
24 tháng 1 2018 lúc 19:55

ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:

gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2

a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3

a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4

 .......

an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n

an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)

cộng các vế đẳng thức trên ta có:

3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1)

=>3(a1+a2+...+an-1+an)=n(n+1)(n+2)

mà A=a1+a2+...+an-1+an nên 

\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Cần Có Một Cái Tên
Xem chi tiết
Lê Văn Đăng Khoa
2 tháng 12 2016 lúc 22:26

Ta có : A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

\(\Rightarrow\)3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2).....n.(n+1).[(n+2)-(n-1)]

\(\Rightarrow\)3A= 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+n.(n+1)(n+2)-(n-1)n(n+1)

\(\Rightarrow\)3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+....+[(n-1).n.(n+1)-(n-1)n(n+1)]+n.(n+1)(n+2)

\(\Rightarrow\)3A=n.(n+1)(n+2)

\(\Rightarrow\)A=\(\frac{\text{n.(n+1)(n+2)}}{3}\)

Đố biết
17 tháng 6 lúc 17:17

Tại sao có 3A

nguyen nam khánh
9 tháng 10 lúc 19:06

j

 

 

Ngộ Phương Uyên
Xem chi tiết
Xem chi tiết
Nguyễn Song Đức Phát
25 tháng 12 2018 lúc 18:24

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

Riin
Xem chi tiết
phuong
18 tháng 3 2018 lúc 19:00

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

Sincere
Xem chi tiết
Huỳnh Quang Sang
5 tháng 2 2018 lúc 20:23

S=1.2+2.3+3.4+.............+n(n+1) 
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

Sincere
5 tháng 2 2018 lúc 20:27

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

Sincere
5 tháng 2 2018 lúc 20:27

làm thế xong tính tiếp nhỉ?

LaLa Manaka
Xem chi tiết
Numi Aikiko
24 tháng 7 2019 lúc 20:49

Không tìm thấy A=1/1.2 + 1/2.3 + 1/3.4+......+1/2019.2060 trong tài liệu nào.

Ðề xuất:

Xin bạn chắc chắn rằng tất cả các từ đều đúng chính tả.Hãy thử những từ khóa khác.Hãy thử những từ khóa chung hơn.Hãy thử bớt từ khóa.

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2019\cdot2020}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

    \(=1-\frac{1}{2020}=\frac{2019}{2020}\)

Lê Trung Hiếu
24 tháng 7 2019 lúc 20:50

A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2019.2060

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2019 - 1/2060

A = 1 - 1/2060

A = 2059/2060

Lonely Girl
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 5 2016 lúc 19:02

Ta có: A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

   =>  3A = 1.2.(3-0) + 2.3.(4-1) + .... + n.(n+1).(n+2 - n+1)

   => 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n+1).(n+2)

  =>  3A = n.(n+1).(n+2)

  = > A = \(\frac{\text{n.(n+1).(n+2)}}{3}\)

Nguyễn Hoàng Tiến
17 tháng 5 2016 lúc 19:00

\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)