Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Huyền
Xem chi tiết
Nguyễn Thị Thu
12 tháng 8 2017 lúc 22:36

Ta có: \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-abx}{c^2}\)

\(=\dfrac{abz-acy+bcx-abz+acy-abx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz-acy=bcx-abz=acy-abx\)

\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)

\(\Rightarrow bz-cy=cx-az=ay-bx\)

\(\Rightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\dfrac{z}{c}=\dfrac{y}{b};\dfrac{x}{a}=\dfrac{z}{c};\dfrac{y}{b}=\dfrac{x}{a}\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow x:y:z=a:b:c\)

Vậy x:y:z = a:b:c

Nháy >.<
12 tháng 8 2017 lúc 22:40

https://olm.vn/hoi-dap/question/116940.html

Son go Ku
Xem chi tiết
Thanh Tùng DZ
7 tháng 1 2018 lúc 20:35

Ta có :

\(\frac{bz-cy}{a}=\frac{cy-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{0}{ax+by+cz}=0\)

Suy ra : bz = cy \(\Rightarrow\frac{z}{c}=\frac{y}{b}\)( 1 )

cx = az \(\Rightarrow\frac{x}{a}=\frac{z}{c}\)  ( 2 )

ay = bx \(\Rightarrow\frac{y}{b}=\frac{x}{a}\)  ( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)hay x : y : z = a : b : c

Xem chi tiết
Akai Haruma
13 tháng 1 2024 lúc 23:51

Lời giải:

Áp dụng TCDTSBN:

$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$

$=\frac{bza-cya}{a^2}=\frac{cxb-azb}{b^2}=\frac{ayc-bxc}{c^2}$

$=\frac{bza-cya+cxb-azb+ayc-bxc}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$

$\Rightarrow bz-cy=cx-az=ay-bx$

$\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}$

Hay $a:b:c=x:y:z$ (đpcm)

Nguyễn Thị Thanh Xuân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Thu
25 tháng 8 2017 lúc 21:59

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

\(=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz-acy=bcx-abz=acy-bcx\)

\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)

\(\Rightarrow bz-cy=cx-az=ay-bx\)

\(\Rightarrow\left\{{}\begin{matrix}bx=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{y}{b}=\dfrac{x}{a}\end{matrix}\right.\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Vậy \(x:y:z=a:b:c\)

Phạm Tố Uyên
29 tháng 11 2017 lúc 22:03

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhau

Lê Phương Uyên
Xem chi tiết
Văn Quyền Mpt
5 tháng 2 2015 lúc 14:27

\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0 
+\frac{bz-cy}{a}=0bz=cy\frac{b}{y}= \frac{c}{z} 
+\frac{cx-az}{b}=0cx=az\frac{a}{x}= \frac{c}{z} 

Từ 
 và  ta có\frac{a}{x}= \frac{b}{y}= \frac{c}{z} (đpcm)

Xem chi tiết
Trịnh Gia Long
Xem chi tiết
Bùi Thị Hà Thu
22 tháng 11 2018 lúc 12:55

thân em thì nhỏ tí ti

các bà các chị , các dì đều thương

em đi em lại 4 phương

dọc ngang lắm lối , lách luồn nhiều nơi

tấm thân hiến chọn cho đời

sang hèn chẳng chê chuộng ,giúp người chẳng quản công

(đó là cây gì)?

My Love bost toán
22 tháng 11 2018 lúc 13:05

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)\(=>\frac{bzx-cyx}{ax}=\frac{ycx-ayz}{by}=\frac{zay-bxz}{cz}\)\(=\frac{bzx-cyx+cyz-ayz+ayz-bzx}{ax+by+cz}=\frac{0}{ax+by+cz}=0\)

\(=>\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\left(=\right)\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\left(=\right)\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}}}\)

\(=>\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)hay a:b:c=x:y:z

học tốt

cao nguyễn thu uyên
Xem chi tiết
doremon
19 tháng 7 2015 lúc 15:04

Vì bz-cy/a=cx-az/b=ay-bx/c 
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2 
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2 
theo tính chất của dãy tỉ số bằng nhau : 
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+... 
= 0/a^2+b^2+c^2=0 
vì bz-cy/a=0=>bz=cy=>y/b=z/c (1) 
vì cx-az/b=0=>cx=az=>x/a=z/c (2) 
từ (1) và (2) => x/a=y/b=z/c

Nguyễn Văn Minh
15 tháng 11 2016 lúc 21:56

trả lời sai đề