tìm tỉ số x:t biết rằng x+y : t+z =4:7 và 7y=4z
a) tìm tỉ số x:t iết rằng: x+y:t+z=4:7 và 7y=4z
b) tìm chu vi của 1 hình chữ nhật biết độ dài 2 cạnh tỉ lệ với các số 3 :5 và diệt tích của hình chữ nhật bằng 135 mét vuông
giúp mình với mình đang cần gấp
a\(\frac{x+y}{t+z}=\frac{4}{7}\)
(x+y)7=4(t+z)
7x+7y=4t+4z
mà 7y=7t
vậy \(\frac{x}{t}=\frac{4}{7}\)
Tìm tỉ số x/y biết (x+y)/(t+z)=4/7 và 7y=4z
Ta có:
\(7y=4z\Leftrightarrow\frac{y}{z}=\frac{4}{7}\)
Mà: \(\frac{x+y}{t+z}=\frac{4}{7}\Leftrightarrow\frac{x+y}{t+z}=\frac{y}{z}=\frac{4}{7}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{x+y}{t+z}=\frac{y}{z}=\frac{4}{7}=\frac{x+y-y}{t+z-z}=\frac{x}{t}\)
Tìm tỉ số \(\frac{x}{t}\)biết rằng \(\frac{x+y}{t+z}=\frac{4}{7}\)và 7y = 4z
Ai làm nhanh là giải có lời cho 2 thích. (Phải làm đúng nhé)
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm các số x, y, x biết rằng :
a) 3x = 2y, 7y = 5z, x - y + z = 32
b) x/3 = y/4, y/2 = x/5, 2x -3y + z = 6
c) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
d) x - 1/2 = y - 2/3 = z - 3/4 và 2x + 3y - z =50
e) x/2 = y/3 = z/5 và xyz = 810
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
Tìm x, y, z biết rằng:4/x= 7/y= 12/z và 2x+ 3y+ 4z= 1925
\(\frac{4}{x}=\frac{7}{y}=\frac{12}{z}=>\frac{8}{2x}=\frac{21}{3y}=\frac{48}{4z}=\frac{8+21+48}{1925}=\frac{77}{1925}=\frac{1}{25}\)
=>4/x=1/25=>x=100
=>7/y=1/25=>y=175
=>12/z=1/25=>z=300
Tìm x,y,z biết :
a) -3 = 7y = 21z và 5x + 10y + 6z = 4
b) 3x = y ; 5y = 4z và 6x + 7y + 8z
tìm x,y,z biết
4x=3y; 7y=5z và x-y+z=-46
x/2=2y/5=4z/7 và 3x+5y+7z=123
x/2=2y/3=3z/4 và xyz=108
Tìm x,y,z
a, x/4=y/3=z/9 và x-3y+4z=62
b, x/y=9/7; y/z=7/3 và x-y+z=-15
c, x/y=7/20; y/z=5/8 và 2x+5y-2z=100
d, 3x=2y;7y=5z và x-y+z=32