\(\frac{64\times50\times44\times100}{27\times38\times146\times19}\)
Tính nhanh \(\frac{64\times50+44\times100}{27\times38+146\times19}\)
\(66\times44=\)
\(88\times100=\)
\(44\times55=\)
giup mình nha cac bạn
Ai trả lời câu hỏi của mình thì tk mình và kb voi mình nhe!!^^^^ ---- ^^^^
66 x 44
= 2904
88 x 100
= 8800
44 x 55
= 2420
4 bài nhé : A; \(0,9\times95+1,8\times2+0,9\) B; \(\frac{\subset100\times44+50\times64\supset\times\subset37414,8\div1000+2242,52\div100\supset}{16\times14,96\times25\times\subset27\times38+19\times146\supset}\) C\(\frac{\left(4,5\times4,8+15\times264-2,4\times9\right)\times\left(15+975,5\right)}{1980\times1981}\) D;\(\frac{19,8\div0,2\times44,44\times2\times13,20\div0,25}{3,3\times88,88\div0,5\times6,6\div0,125\times5}\)
cai gi the DƯƠNG ...................!
Tìm số nguyên âm x, biết:
\(^{x^2}-\left(\frac{3}{5}\right)^2=\frac{1}{1\times2}+\frac{1}{2\times7}+\frac{1}{5\times7}+\frac{1}{5\times13}+\frac{1}{8\times13}+\frac{1}{8\times19}+\frac{1}{11\times19}+\frac{1}{11\times19}+\frac{1}{11\times25}\)
AI NHANH MK TICK CHO NHA!
cho : \(M=\frac{1}{1\times2}+\frac{1}{3\times4}+...+\frac{1}{37\times38}\)
và \(N=\frac{1}{20\times38}+\frac{1}{21\times37}+...+\frac{1}{38\times20}\)
Chứng minh : \(\frac{M}{N}\)là số nguyên
\(\frac{1}{40\times41}+\frac{1}{41\times42}+\frac{1}{42\times43}+\frac{1}{43\times44}=\)
\(\frac{1}{40\times41}+\frac{1}{41\times42}+\frac{1}{42\times43}+\frac{1}{43\times44}\)
\(=\frac{1}{40}-\frac{1}{41}+\frac{1}{41}-\frac{1}{42}+\frac{1}{42}-\frac{1}{43}+\frac{1}{43}-\frac{1}{44}\)
\(=\frac{1}{40}-\frac{1}{44}=\frac{1}{440}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{49\times50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
Học tốt
\(\frac{5}{4}\times19\frac{4}{5}-\frac{5}{4}\times47\frac{1}{5}\)
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{17\times19}\)=
Đặt \(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{17x19}\)
=>\(2xA=2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{17x19}\right)\)
=>\(2xA=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{17x19}\)
=>\(2xA=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\)
=>\(2xA=1-\frac{1}{19}=\frac{18}{19}\)
=>\(A=\frac{18}{19}:2=\frac{9}{19}\)
(\(\frac{1}{1}-\frac{1}{3}\left(\right)+\left(\right)\frac{1}{3}-\frac{1}{5}\left(\right)+\left(\right)\frac{1}{5}-\frac{1}{7}\left(\right)+....+\left(\right)\frac{1}{17}-\frac{1}{19}\left(\right)\)\(\frac{1}{19}\)
\(\frac{1}{1}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+....+\left(\frac{1}{17}-\frac{1}{17}\right)-\frac{1}{19}\)
\(\frac{1}{1}-\frac{1}{19}=\frac{18}{19}\)
=2x(\(\frac{1}{1\times3}+\)\(\frac{1}{3\times5}+\)\(\frac{1}{5\times7}+\)..........+\(\frac{1}{17\times19}\))
=\(\frac{2}{1\times3}+\)\(\frac{2}{3\times5}+\)\(\frac{2}{5\times7}+\)............+\(\frac{2}{17\times19}\)
=\(\frac{1}{1}-\)\(\frac{1}{3}+\)\(\frac{1}{3}-\)\(\frac{1}{5}+\)\(\frac{1}{5}-\frac{1}{7}\)\(+\)..........\(+\)\(\frac{1}{17}-\frac{1}{19}\)
=\(\frac{1}{1}-\frac{1}{19}\)
=\(\frac{19}{19}-\frac{1}{19}\)
=\(\frac{18}{19}\)