Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thị Thanh Nga
Xem chi tiết
✪SKTT1 NTD✪
1 tháng 10 2018 lúc 13:18

ta có nếu a+b+c+d #0 thì 
a+b/b+c = c+d/d+a = a+b+c+d / a+b+c+d = 1 (( 
vậy a+b = b+c <=> a=c 
nếu a+b+c+d = 0 thì ta có 
a+b= -(c+d) 
b+c = -(d+a) 
vậy nên luôn có a+b/c+d = c+d/d+a

Trịnh Nhật Nam
Xem chi tiết
Tuấn Nguyễn
31 tháng 10 2018 lúc 16:46

Ta có:

\(2bd=c\left(b+d\right)\)

\(\Rightarrow\left(a+c\right).d=bc+cd\)

\(\Rightarrow ad+cd=bc+cd\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Trịnh Nhật Nam
30 tháng 10 2018 lúc 20:27

Giúp mik nha

😁😁😁😁😁

Giraffe - chan
30 tháng 10 2018 lúc 20:29

Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> a/b = c/d (đpcm)

Master yi legend
Xem chi tiết
Hoàng Phúc
28 tháng 3 2016 lúc 21:34

Ta có:2bd=c(b+d)

=>2bd=bc+cd

Mà a+c=2b (theo đề)

=>(a+c).d=bc+cd

=>ad+cd=bc+cd

=>ad=bc (cùng bớt đi cd)

=>a/b=c/d (đpcm)

Con Gái Họ Trần
Xem chi tiết
thanh tam tran
29 tháng 8 2016 lúc 20:09

bacd=dacb vay ...

Sống cho đời lạc quan
10 tháng 12 2016 lúc 20:18

tự làm đi cái này không khó 

Nguyễn Thị Thanh Trúc
Xem chi tiết
Nguyễn Việt Nhân
Xem chi tiết
Xyz OLM
17 tháng 6 2021 lúc 13:01

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=> cd(a2 + b2) = ab(c2 + d2

=> a2cd + b2cd = abc2 + abd2

=>  a2cd + b2cd - abc2 - abd2 = 0

=>  (a2cd - abc2) + (b2cd - abd2) = 0

=> ac(ad - bc) + bd(bc - ad) = 0

=> ac(ad - bc) - bd(ad - bc) = 0

=> (ac - bd)(ad - bc) = 0

=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\Rightarrow\text{đpcm}\)

Khách vãng lai đã xóa
Trần Khánh Thành
Xem chi tiết
Kiệt Nguyễn
25 tháng 6 2019 lúc 6:23

Câu hỏi của ko ko - Toán lớp 6 - Học toán với OnlineMath

Tham khảo

Bùi anh tuấn
Xem chi tiết
My Love bost toán
22 tháng 11 2018 lúc 19:09

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

My Love bost toán
22 tháng 11 2018 lúc 19:20

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Jctdhsdtf
23 tháng 11 2018 lúc 20:05

Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko 

Saito Haijme
Xem chi tiết
Nguyễn Thị Ngọc Ánh
6 tháng 10 2019 lúc 21:47

ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

=>(a+b)(a+d)=(b+c)(c+d)

=> a2 + ab+ad+bd=bc+c2+bd+cd

=>a2+ab+ad-bc-c2-cd=0

=>(a2-c2)+(ad-cd)+(ab-bc)=0

=>(a-c)(a+c)+d(a-c)+b(a-c)=0

=>(a-c)(a+b+c+d)=0

\(\rightarrow\orbr{\begin{cases}a-c=0\rightarrow a=c\\a+b+c+d=0\end{cases}}\)(đpcm)

Vậy...

chúc bn hc tốt

Ozora Tsubasa
6 tháng 10 2019 lúc 21:54

Ta có : a+b/b+c=c+d/d+a

=> (a+b)/(c+d) = (b+c)/(d+a)

=> (a+b)/(c+d)+1=(b+c)/(d+a)+1

hay (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)

*TH1 a+b+c+d khác 0 thì c+d=d+a => a=c (1)

*TH2 a+b+c+d=0 (2)

Từ (1) và (2) => a+b+c+d=0 và a=c (đpcm)

 ❤♚ℳℴℴทℛℴƴຮ♚❤
7 tháng 3 2020 lúc 18:27

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Khách vãng lai đã xóa