Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tư Linh
Xem chi tiết
Akai Haruma
16 tháng 8 2021 lúc 23:22

Lời giải:

Ta thấy $n,n-3$ khác tính chẵn lẻ nên $n(n-3)$ chẵn 

$\Rightarrow n^2-3n+1$ lẻ. Do đó:

$25\equiv -1\pmod{13}$

$\Rightarrow 25^{n^2-3n+1}\equiv (-1)^{n^2-3n+1}\equiv -1\pmod {13}$

$\Rightarrow 25^{n^2-3n+1}-12\equiv -13\equiv 0\pmod {13}$

Vậy $25^{n^2-3n+1}-12$ luôn chia hết cho $13$ với mọi $n$ nguyên dương 

Do đó để nó là snt thì $25^{n^2-3n+1}-12=13$

$\Leftrightarrow n^2-3n+1=1$

$\Leftrightarrow n(n-3)=0$

$\Leftrightarrow n=3$ (do $n$ nguyên dương)

Nguyễn Khánh Linh
Xem chi tiết
Cù Hương Ly
Xem chi tiết
Cù Hương Ly
Xem chi tiết
Huỳnh Kim Nhật Thanh
30 tháng 6 2018 lúc 17:19

Đặt n+6=a2    n+1=b2 (a,b dương a>b)

=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)

Mình làm đại đó,ahihi  :v

Cù Hương Ly
Xem chi tiết
Hoàng Thị Minh Phương
Xem chi tiết
Ngu Ngu Ngu
22 tháng 2 2017 lúc 14:27

\(n=1\)

Thao Khang
Xem chi tiết
Lê Song Phương
6 tháng 12 2023 lúc 17:03

Ta thấy \(87=1.87=3.29\) nên ta xét 2TH

 TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)

 Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.

 TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)

 Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)

 TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)

Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.

 TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:

   TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.

   TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)

 Vậy, số cần tìm là 11999.

  

Tiến Nguyễn Minh
Xem chi tiết
Thanh Tùng DZ
15 tháng 3 2020 lúc 21:09

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

Khách vãng lai đã xóa
Tiến Nguyễn Minh
24 tháng 3 2020 lúc 20:26

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

Khách vãng lai đã xóa
Tiến Nguyễn Minh
26 tháng 3 2020 lúc 20:40

Đặt \(p^{2m}+q^{2n}=a^2\)\(\left(a\in Z\right)\)(1)

Nếu p,q lẻ suy ra \(p^{2m}\equiv q^{2n}\equiv1\)(mod 4)

\(\Rightarrow a^2\equiv2\)(mod 4), vô lý.

Suy ra trong p,q có 1 số = 2

Không mất tính tổng quát, giả sử p=2

\(\left(1\right)\Leftrightarrow2^{2m}+q^{2n}=a^2\)(2)

Nếu q khác 3 \(\Rightarrow\)q không chia hết cho 3\(\Rightarrow\)\(q^2\equiv1\)(mod 3)\(\Rightarrow\)\(q^{2n}\equiv1\)(mod 3)

Mà \(2^{2m}=4^m\equiv1^m\equiv1\)(mod 3)

Suy ra \(2^{2m}+q^{2n}\equiv2\)(mod 3)\(\Rightarrow\)vô lý.

Do đó q=3.

(2) trở thành \(2^{2m}+3^{2n}=a^2\)\(\Leftrightarrow\)\(3^{2n}=\left(a-2^m\right)\left(a+2^m\right)\)

\(\Rightarrow\)\(a-2^m\)và \(a+2^m\)là lũy thừa của 3.

Mà 2 số trên không cùng chia hết cho 3 (vì hiệu của chúng không chia hết cho 3)

\(\Rightarrow\)Có 1 số không chia hết cho 3\(\Rightarrow\)Có 1 số bằng 1 mà \(a-2^m< a+2^m\)\(\Rightarrow\hept{\begin{cases}a-2^m=1\\a+2^m=3^{2n}\end{cases}}\Rightarrow2\cdot2^m=3^{2n}-1\Rightarrow2^{m+1}=\left(3^n-1\right)\left(3^n+1\right)\)

\(\Rightarrow\)\(3^n-1\)và \(3^n+1\)đều là lũy thừa của 2.

Mà 2 số này không cùng chia hết cho 4 (do hiệu của chúng = 2 không chia hết cho 4).

\(\Rightarrow\)Có 1 số không chia hết cho 4.

Mà 2 số cùng tính chẵn lẻ\(\Rightarrow\)2 số cùng chẵn\(\Rightarrow\)Có 1 số = 2.

\(\Rightarrow\hept{\begin{cases}3^n-1=2\\3^n+1=2m\end{cases}}\)(do \(3^n-1< 3^n+1\))\(\Rightarrow\hept{\begin{cases}n=1\\m=2\end{cases}\Rightarrow\hept{\begin{cases}p=2\\q=3\end{cases}.}}\)

P/S: Bài dài viết lại mỏi quá.

Khách vãng lai đã xóa
Phạm Hồng Linh
Xem chi tiết
dsfdsfadf
2 tháng 1 2018 lúc 19:07

madara and obito