Cho A={1/101+1/102+1/103+...+1/200}
Chứng minh A>7/12
Cho A=1/101+1/102+1/103+...+1/200
Chứng minh A>7/12
Cho A = 1/101+1/102+1/103+...+1/200
Chứng minh rằng A>7/12
a= 1/101+1/102+1/103+..+1/200 chứng minh a>7/12
Chứng minh rằng :
a) 7/12 <1/101+1/102+1/103+...+1/200 <1
b) 1/101+1/102+1/103+...+1/150>1/3
a ) Số lượng số của dãy số trên là :
\(\left(200-101\right):1+1=100\) ( số )
Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)
b ) Số lượng số dãy số trên là :
\(\left(150-101\right):1+1=50\)( số )
Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
\(\Rightarrowđpcm\)
Chứng minh: A > 7/12 và A > 5/8 với A = 1/101 + 1/102 + 1/103 + ... + 1/200
cho A=1/101+1/102+1/103+...+1/200
Chứng minh rằng:
a)A>7/12
b)A>5/8
Cho A = 1/ 101 + 1/ 102 + 1/103+...+ 1/ 200
Chứng minh rằng : A > 7/ 12
A>1/150+1/150+1/150+...+1/150(50 số 1/150)+1/200+1/200+1/20+...+1/200(50 số 1/200).
=>A>1/150*50+1/200*50.
=>A>1/3+1/4=7/12.
Vậy A>7/12(đpcm).
tk mk nha nay mk học bài này,chắc chắn.
-chúc ai tk mk học giỏi-
Ta có :
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)
\(=\frac{1}{150}.50+\frac{1}{200}.50=\left(\frac{1}{150}+\frac{1}{200}\right).50=\frac{7}{600}.50=\frac{7}{12}\)
\(\Rightarrow A>\frac{7}{12}\)
Giúp mình 5 câu này nhé . Ai làm đc cả 5 câu cho 10 điểm luôn ( Nếu đúng )
1/Cho A= 1/101+1/102+1/103+...+1/150
a) So sánh 1/150 với 1/101;...; 1/150 với 1/149 <----------------KO PHẢI LÀM
b) Chứng minh : A > 1/3
2/ Cho A= 1/101+1/102+1/103+...+1/200
a) So sánh: 1/101+1/102+...+1/150với 1/3 và 1/151+1/152+...+1/200 với 1/4
b) Chứng minh: A > 7/12
3/Cho A= 1/101+1/102+...+1/200
Chứng minh: 1/2 < A < 1
4/ Cho A = 1/101+1/102+1/103+...+1/150. Chứng minh: 1/3 < A < 1/2
5/ Chứng minh: 1/5+1/14+1/28 < 1/3
CHÚC CÁC BẠN THÀNH CÔNG
CÁC BẠN CHỈ CẦN GIÚP MÌNH ÍT NHẤT 2 CÂU THÔI
Chứng minh: 1/101 +1/102 +1/103 + ...+1/200 >=7/12
Lời giải:
Ta thấy:
$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{150}> \frac{1}{150}+\frac{1}{150}+\frac{1}{150}+....+\frac{1}{150}=\frac{50}{150}=\frac{1}{3}$ (1)
$\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}> \frac{1}{200}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{50}{200}=\frac{1}{4}$ (2)
Cộng kết quả (1) và (2) theo vế ta được:
$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}> \frac{1}{3}+\frac{1}{4}=\frac{7}{12}$