Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Quy Ngoc
Xem chi tiết
Hoàng Thu Thủy
Xem chi tiết
Do Kyung Soo
27 tháng 1 2016 lúc 19:54

ai tick mk với nào 

qwertyuiop
27 tháng 1 2016 lúc 19:54

bn nhấn vào đúng 0 sẽ ra đáp án

phuonglinh
Xem chi tiết
Đặng Kiều Trang
Xem chi tiết
Arima Kousei
27 tháng 7 2018 lúc 16:16

a )   Số lượng số của dãy số trên là : 

\(\left(200-101\right):1+1=100\) ( số ) 

Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau : 

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)

\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)

\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)

b )  Số lượng số dãy số trên là : 

\(\left(150-101\right):1+1=50\)( số ) 

Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)

\(\Rightarrowđpcm\)

pluto
Xem chi tiết
vũ thị minh anh
Xem chi tiết
Phạm Hương Giang
12 tháng 5 lúc 10:01

Ta có: 𝐶=1101+1102+1103+...+1200

=(1101+1102+...+1120)+(1121+1122+1123+...+1150)+(1151+1152+1153+...+1180)+(1181+1182+1183+...+1200)

⇔𝐶>20⋅1120+30⋅1150+30⋅1180+20⋅1200

⇔𝐶>16+15+16+110=1930=76120

⇔𝐶>75120=58

hay 𝐶>58(đpcm)

 TỰ thay C=a nhA

lê thanh thủy
Xem chi tiết
nhok sư tử
28 tháng 4 2017 lúc 17:04

tớ bít nè

Zlatan Ibrahimovic
28 tháng 4 2017 lúc 17:07

A>1/150+1/150+1/150+...+1/150(50 số 1/150)+1/200+1/200+1/20+...+1/200(50 số 1/200).

=>A>1/150*50+1/200*50.

=>A>1/3+1/4=7/12.

Vậy A>7/12(đpcm).

tk mk nha nay mk học bài này,chắc chắn.

-chúc ai tk mk học giỏi-

Thanh Tùng DZ
28 tháng 4 2017 lúc 17:13

Ta có :

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)

\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)

\(=\frac{1}{150}.50+\frac{1}{200}.50=\left(\frac{1}{150}+\frac{1}{200}\right).50=\frac{7}{600}.50=\frac{7}{12}\)

\(\Rightarrow A>\frac{7}{12}\)

Phạm Hoàng Nam
Xem chi tiết
Sky Love MTP
14 tháng 2 2016 lúc 20:36

j mà  nhìu zu zậy làm bao giờ mới xong

Trần Thanh Phương
14 tháng 2 2016 lúc 20:38

Ủng hộ mk đi các bạn
 

buivu
Xem chi tiết
Akai Haruma
25 tháng 10 lúc 22:44

Lời giải:
Ta thấy:

$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{150}> \frac{1}{150}+\frac{1}{150}+\frac{1}{150}+....+\frac{1}{150}=\frac{50}{150}=\frac{1}{3}$ (1)

$\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}> \frac{1}{200}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{50}{200}=\frac{1}{4}$ (2)

Cộng kết quả (1) và (2) theo vế ta được:

$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}> \frac{1}{3}+\frac{1}{4}=\frac{7}{12}$