tim GTLN cua bieu thuc B=14+2x-2x2
Tim GTLN cua bieu thuc= -x2 - y2 + xy + 2x + 2y
\(A=-x^2-y^2+xy+2x+2y\\ =-2x^2-2y^2+2xy+4x+4y\\ =\left(-x^2+2xy-y^2\right)+\left(-x^2+4x-4\right)+\left(-y^2+4y-4\right)+8\\ =-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+8\\ =-\left(x-y\right)^2-\left(x-2\right)^2-\left(y-2\right)^2+8\\ =-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\\ \left(x-y\right)^2\ge0\forall x,y;\left(x-2\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y\\ \Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]\le0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\le8\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-2=0\\y-2=0\end{matrix}\right.\\ \Leftrightarrow x=y=2\)
Vậy \(MAX_A=8\text{ khi }x=y=2\)
tim GTLN cua bieu thuc A=7x-8/2x-3
help
Tim GTLN cua bieu thuc
B= -x2 - y2 + xy + 2x + 2y
B = - x2 -y2 + 2x + 2y
B = -( x2 - 2x + 1) - ( y2 - 2y + 1) + 2
B = -( x - 1)2 - ( y - 1)2 + 2
Do : -( x - 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : -( x - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x
Do : - ( y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : - ( y - 1)2 + 2 nhỏ hơn hoặc bằng 2 với mọi x
Vậy , Bmax = 2 khi và chỉ khi : x - 1 = 0 -> x = 1
y - 1 = 0 -> y = 1
tim GTLN cua bieu thuc sau
3|x|+14/|x|+2
AI GIUP MK VSSSS
tim GTLN cua bieu thuc sau
3|x|+14/|x|+2
AI GIUP MK VSSSS
tim GTNN va GTLN cua bieu thuc E= 2x2 +20x-43
tim GTLN cua bieu thuc
a x^2-2x+101
x^2 - 2x +101= x^2 - 2x +1 +100
= (x-1)^2 +100
(x-1)^2 >=0
=> (x-1)^2 + 100 >= 100
dấu = xảy xa <=> x=1
Vậy, GTNN của a là 100 khi x bằng 1
x2-2x+101
=x2-2x+12+100
=(x-1)2+100
Vì (x-1)2\(\le\)0 nên (x-1)2+100\(\le\)100
Vậy GTLN là 100 khi x=1
a,Tim GTNN cua bieu thuc \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b,Tim GTLN cua bieu thuc \(D=\frac{4}{\left(2x-3\right)^2+5}\)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
Cho pt 2x^2 +2mx +m^2-2
a. Tim m de pt co ngo
b. Tim GTLN cua bieu thuc C=|2x1x2+x1+x2-4|
câu a chắc bạn làm được. delta >= 0 á
b.bạn dùng viet tính ra x1+x2, x1.x2 rồi thay vào cái biểu thức. bạn biến đổi làm sau cho cái biểu thức đó thành một hằng đẳng thức (1, 2) cộng với 1 số nguyên. cái số đó chính là GTLN