cho a+b+c=6 và ab+bc+ca=12.Tính giá trị M=(a-b)2015+(b-c)2015+(c-a)2015
cho a+b+c=6 và ab+bc+ac=12
tính giá tri biểu thức : (a-b)2014+(b-c)2015+(c-a)2016
Cho a,b,c thoả mãn ab + bc + ca = 2014abc và 2014abc = 1. Tính \(A=a^{2015}+b^{2015}+c^{2015}\)
Cho a+b+c=1
Tính M =(2015/ab+a+1)+(2015/bc+b+1)+(2015/ac+c+1)
Cho a.b.c=2015.Tinh A= \(\frac{2015}{ab+a+2015}+\frac{2015}{bc+b+2015}+\frac{2015}{ca+c+2015}\)
Cho các số thực dương a, b, c, thỏa mãn a^3+b^3+c^3 = 3abc
Tính giá trị của biểu thức N= a^2015+b^2015+c^2015 / (a+b+c)^2015
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
Ta lại có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
Dấu = xảy ra khi \(a=b=c\)
Thế vào N ta được
\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)
Bai 1:cho a,b,c la do dai 3 canh tam giac
CMR a^2016/b+c-a + b^2016/c+a-b + c^2016/a+b-c >= a^2015 +b^2015+c^2015
Bai 2;cho a,b,c la cac so thuc thoa man:0<=a,b,c<=4 va a+b+c=6
tim GTLN P=a^2+b^2+c^2 +ab+bc+ca
Cho a.b.c=2015
Tính A=2015/ab+a+2015+b/bc+b+2015+2015/abc+bc+c
Cho các số a,b,c thỏa mãn: a+b+c=1/a+1/b+1/c=1.Tính giá trị biểu thức sauM=a2015+b2015+c2015
Cho a,b,c là các số thực thỏa mãn: \(a^2+b^2+c^2=ab+bc+ca\)
Tính giá trị biểu thức P=\(\left(a-b\right)^{2015}+\left(b-c\right)^{2016}+\left(c-a\right)^{2017}\)
\(a^2+b^2+c^2=ab+bc+ca\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow\left(2a^2+2b^2+2c^2\right)-\left(2ab+2bc+2ca\right)=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\)\(\Rightarrow a-b=b-c=c-a=0\)
\(\Rightarrow P=\left(a-b\right)^{2015}+\left(b-c\right)^{2016}+\left(c-a\right)^{2017}=0\)