chững minh rằng
a) a^3+B^3 = (a+b)*[(a-b)^2+a*b]
cho 3 số a, b, c thỏa mãn a*b*c=1. Chững minh rằng: 1/(a*b+a+1) + 1/(b*c+b+1) + 1/(a*b*c+b*c +b)=1
Cho: \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\).Chững minh rằng:
\(\frac{a^3+c^3-abc}{c^3+b^3-bcd}=\frac{a}{d}\)
Đặt \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}=k\)
\(\Rightarrow k^3=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{abc}{bcd}=\frac{a^3+c^3+abc}{c^3+b^3+bcd}\)(1)
Ta lại có : \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{b}\cdot\frac{b}{d}=\frac{a}{d}\) (2)
Từ (1) ; (2) => \(\frac{a}{d}=\frac{a^3+c^3+abc}{c^3+b^3+bcd}\) (đpcm)
cho các số a, b, c thuộc[0;1].
Chững minh rằng \(a+b^3+c^3-ab-bc-ca<=1\)
CHo 2 số hữu tỉ a/b và c/d ( b và d > 0) Chững minh rằng c/d < c+a / d=b < a/b
cho các số dương a,b,c thỏa mãn điều kiện a+b+c=6. chững minh rằng: ab/6+a-c +bc/6+b-a + ca/6+c-b <=2
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{ab}{6+a-c}=\frac{ab}{a+b+c+a-c}=\frac{ab}{2a+b}\)
\(=\frac{ab}{a+a+b}\le\frac{1}{9}\left(\frac{ab}{a}+\frac{ab}{a}+\frac{ab}{b}\right)=\frac{1}{9}\left(2b+a\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{6+b-a}\le\frac{1}{9}\left(2c+b\right);\frac{ca}{6+c-b}\le\frac{1}{9}\left(2a+c\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{9}\cdot3\left(a+b+c\right)=\frac{1}{3}\cdot\left(a+b+c\right)=\frac{6}{3}=2\)
Đẳng thức xảy ra khi \(a=b=c=2\)
Chững minh rằng bất đẳng thức : \(\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}.\)
Ta có thể xét hiệu : \(\dfrac{a^2+b^2}{2}-\left(\dfrac{a+b}{2}\right)^2=\dfrac{2\left(a^2+b^2\right)}{4}-\dfrac{\left(a+b\right)^2}{4}\)
\(=\dfrac{2\left(a^2+b^2\right)-\left(a^2+2ab+b^2\right)}{4}\)
\(=\dfrac{1}{4}\left(a^2-2ab+b^2\right)=\dfrac{1}{4}\left(a-b\right)^2\)
Ta thấy : \(\left(a-b\right)^2\ge0\) nên \(\dfrac{1}{4}\left(a-b\right)^2\ge0\)
Hay là : \(\dfrac{a^2+b^2}{2}-\left(\dfrac{a+b}{2}\right)^2\ge0\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
=> ĐPCM.
Chững minh rằng với a,b thuộc th số nguyên, a,b khác dấu thì ab < a và ab < b
vì a,b khác dấu
=> ab sẽ bẵng một số nguyên âm nhỏ hơn a , b
Chững minh rằng
A= 1 + 4 +42+43+....+459
a, A chia hết 5
b, A chia hết 21
c, A chia hết 85
a) A = 1 + 4 + 42 + 43 + ... + 459
A = ( 1 + 4 ) + ( 42 + 43 ) + ... + ( 458 + 459 )
A = 5 + 42 . ( 1 + 4 ) + ... + 458 . ( 1 + 4 )
A = 5 + 42 . 5 + ... + 458 . 5
A = 5 . ( 1 + 42 + ... + 458 ) chia hết cho 5
b) A = 1 + 4 + 42 + 43 + ... + 459
A = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 457 + 458 + 459 )
A = 21 + 43 . ( 1 + 4 + 42 ) + ... + 457 . ( 1 + 4 + 42 )
A = 21 + 43 . 21 + ... + 457 . 21
A = 21 . ( 1 + 43 + ... + 457 ) chia hết cho 21
c) A = 1 + 4 + 42 + 43 + ... + 459
A = ( 1 + 4 + 42 + 43 ) + ( 44 + 45 + 46 + 47 ) + ... + ( 456 + 457 + 458 + 459 )
A = 85 + 44 . (1 + 4 + 42 + 43 ) + ... + 456 . ( 1 + 4 + 42 + 43 )
A = 85 + 44 . 85 + ... + 456 . 85
A = 85 . (1 + 44 + ... + 456 ) chia hết cho 85
Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0
Bài 2
Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Chững minh a + b+ c+ d = 0
Bài 3
Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)
Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Bài 4
Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)
Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức
Bài 5
Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)
Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)
Bài 6
Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)
Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)
Bài 7
Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)
Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức
Bài 8
Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)
a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)
b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)