101+1+102+1+1111+11+1+1+1+1+1+1+1+1+1+1=?
chung minh rang :1/101+1/102+1/103+...+1/400<11/6
tìm x biết (1/1*101+1/2*102+...+1/16*116)*x=1/1*11+1/2*12+...+1/16*26
1+1+1+1+1+1+1+1+1+1+1+1+11+1+11+1111+11+111+11+1+1+1+1+1+1+1+1+1+1+1111 = ?
đố biết !!!
1+1+1+1+1+1+1+1+1+1+1+1+11+1+11+1111+11+111+11+1+1+1+1+1+1+1+1+1+1+1111
= 23 + 44 + 2222 +111
= 67 + 2333
= 2400
Chúc bn học tốt .
So sánh
a, A= 10^11-1/10^12-1 và B= 10^10+1/10^11+1
b, A= -9/10^2010+-19/10^2011 và B = -9/10^2011+-19/10^2010
c, M = 101^102+1/101^103+1 và N = 101^103+1/101^104+1
d, C= 1/31+1/32+...+1/60 và 4/5
chứng minh rằng
a,1\101+1\102+...+1\199+1\200 <1
b,1\101+1\102+...+1\149+1\150>1\3
c,1\101+1\102+...+1\199+1\200>7\12
cái này dễ lắm chỉ là chưa để ý thôi:
a,1/101>1/102>...>1/199>1/200
=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1
các phần khác làm tương tự
đánh mỏi tay quá duyệt luôn đi
cái này ở trong học tốt toán 6 đúng không
So sánh:
a)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với 1
b)\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{149}+\dfrac{1}{150}\) với\(\dfrac{1}{3}\)
c)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với \(\dfrac{7}{12}\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
tính A:B bt A=1/1*300+1/2*301+...+101*400
B=1/1*102+11/2*103+...+1/299*400
1. Cho A=1/101+1/102+1/103+...+1/150
Chứng minh rằng A > 11/30
Cho A = 1/101+1/102+...+1/200
1, So sánh: 1/101 với 1/102;...;1/101 với 1/200
2, Chứng minh rằng : A > 1
1/Bạn thấy trong phép chia thì phép nào có số chia lớn hơn thì thương nhỏ hơn, vì vậy ps có mẫu lớn hơn thì nhỏ hơn.
2/ Ta có: Số số hạng của tổng là 200
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(...\)
\(\frac{1}{199}>\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}>\frac{1}{200}+...+\frac{1}{200}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}>\frac{1}{200}+...+\frac{1}{200}\)(mỗi bên đều 200 số hạng)
\(\Rightarrow A>\frac{1}{200}.200\)
\(\Rightarrow A>1\)