phan tich cac da thuc sau thanh nhan tu:
a) \(2x^2+3x-27\)
b) \(2x^2-5xy-3y^2\)
phan tich da thuc sau thanh nhan tu:
a)(x-y+4)^2-(2x+3y-1)^2
Đặt \(A=\left(x-y+4\right)^2-\left(3x+3y-1\right)^2\)
Ta có:
\(\left(x-y+4\right)^2=x^2-xy+4x-yx+y^2-4y+4x-4y+16\)
\(=x^2+y^2-2xy+8x-8y+16\)
\(\left(3x+3y-1\right)^2=9x^2+9xy-3x+9xy+9y^2-3y-3x-3y+1\)
\(=9x^2+9y^2-6x-6y+18xy+1\)
Mình làm đến đây bạn trừ 2 kết quả cho nhau rồi sẽ ra
bai 166 a) 6x^2 -11x +3 phan tich cac da thuc sau thanh nhan tu
b) 2x^+3x-27
c) 2x^2-5xy-3y^2
bai 167 a) x^3+2x-3 b) x^3-7x+6 c)x^3 +5x^2 +8x +4 d) x^3 -9x^2 +6x +16
e)x^3-x^2-x-2 g ) x^3+x^2-x+2 h)x^3 -6x^2-x+30
bai 169 a) 27x^3-27x^2 +18x-4
b)2x^3-x^2+5x+3
c)(x^2-3)^2+16
Dài 166
b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)
Bai 1 Phan tich da thuc thanh nhan tu
x^3 + 3x- 3xy- 3y
Bai 2 Tim x
( 2x - 1) ( 2x + 1) - 4 ( x ^2 +x ) = 16
cac bn lam on giup mink di ma
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
phan tich da thuc thanh nhan tu
a) m^2 -7m +12
b) 2x^4 -x^3 -54x +27
A, m2-7m+12=m2-3m+12-4m=m(m-3)-4(m-3)=(m-4)(m-3)
B, 2x4-x3+27-54x=x3(2-x)-27(2-x)=(x3-27)(2-x)=(x-3)(x2+3x+9)(2-x)
a) m^2 -7m +12 = m^2 -3m -4m +12
=m(m -3)-4 (m- 3)
=(m-4)(m-3)
b) 2x^4-x^3 -54x+ 27
=(2m^4-x^3)- (54x - 27)
=x^3(2x-1)-27(2x-1)
=(x^3-27)(2x-1)
phan tich da thuc thanh nhan tu
a) 2x^2 - 3x
\(2x^2-3x\)
\(=x\left(2x-3\right)\)
Học tốt
phan tich cac da thuc sau thanh nhan tu theo mau:
2x^3-x
5x^2(x-1)-15x(x-1)
3x^2y^2+12x^2y-15x-y^2
3x(x-2y)+6y(2y-x)
phan tich cac da thuc sau thanh nhan tu theo mau:
a)\(2x^3-x\)
\(=x\left(2x^2-1\right)\)
\(=x\left(\left(\sqrt{2}x\right)^2-1^2\right)\)\
\(=x\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)\)
b)\(5x^2\left(x-1\right)-15x\left(x-1\right)\)
\(=\left(5x^2-15x\right)\left(x-1\right)\)
\(=5x\left(x-3\right)\left(x-1\right)\)
d)\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(3x-6y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)^2\)
phan tich cac da thuc sau thanh nhan tu
x^2-x-12
x^2+8x+15
x^3-x^2+x+3
x^8+3x^4+4
x^6-x^4-2x^3+2x^2
c)\(x^3-x^2+x+3=x^2+x-2x^2-2x+3x+3\)
\(=x\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+3\right)\)
d)\(x^8+3x^4+4=\left(x^8+4x^4+4\right)-x^4=\left(x^4+2\right)^2-\left(x^2\right)^2\)
\(=\left(x^4-x^2+2\right)\left(x^4+x^2+2\right)\)
e)\(x^6-x^4-2x^3+2x^2=x^4\left(x^2-1\right)-2x^2\left(x-1\right)=x^4\left(x-1\right)\left(x+1\right)-2x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^3+x^2\right)-2x^2\left(x-1\right)=x^2\left(x-1\right)\left(x^3+x^2-2\right)\)
\(=x^2\left(x-1\right)\left[\left(x^3-1\right)+\left(x^2-1\right)\right]=x^2\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(x+1\right)\right]\)
\(=x^2\left(x-1\right)\left(x-1\right)\left(x^2+2x+2\right)=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)
a)\(x^2-x-12\)
\(=x^2+4x-3x-12\)
\(=x\left(x+4\right)-3\left(x+4\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
b) \(x^2+8x+15\)
\(=x^2+3x+5x+15\)
\(=x\left(x+3\right)+5\left(x+3\right)\)
\(=\left(x+3\right)\left(x+5\right)\)
phan tich da thuc thanh nhan tu
3x^2 + y^2 + 2x -2y -1