Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Charlet
Xem chi tiết
Trịnh Cẩm Đan Lê
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Bùi Thị Hoài
5 tháng 11 2016 lúc 18:43

tách 10 + 6 căn 3 = 1 + 3 căn 3 +3 căn 3 + 9 = ( căn 3 -1)

   6 + 2 căn 5 = ( căn 5+1)2

sau đó thay vô là được

alibaba nguyễn
5 tháng 11 2016 lúc 19:01

Ta có

\(\frac{\sqrt[3]{10+6\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)

\(=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=2\)

Thế vào ta được

P = (23 - 4×2 - 1)2012 = 1

Nguyễn Thị Hà My
Xem chi tiết
Nguyễn Huy Tú
24 tháng 5 2021 lúc 11:44

a, \(M=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\)

\(=\frac{x-6\sqrt{x}+\sqrt{x}+6+17\sqrt{x}+30}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{12\sqrt{x}+x+36}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-6}\)

b, Ta có : \(L=N.M\Rightarrow L=\frac{\sqrt{x}+6}{\sqrt{x}-6}.\frac{24}{\sqrt{x}+6}=\frac{24}{\sqrt{x}+6}\)

Vì \(\sqrt{x}+6\ge6\)

\(\Rightarrow\frac{24}{\sqrt{x}+6}\le\frac{24}{6}=4\)

Dấu ''='' xảy ra khi \(\sqrt{x}+6=6\Leftrightarrow x=0\)

Vậy GTLN L là 4 khi x = 0

Khách vãng lai đã xóa
illumina
Xem chi tiết
YangSu
17 tháng 6 2023 lúc 14:56

Ta có :

\(A.B=\dfrac{24}{\sqrt{x}+6}.\dfrac{\sqrt{x}+6}{\sqrt{x}-6}\)

\(=\dfrac{24}{\sqrt{x}-6}\)

Để \(AB\le12\Leftrightarrow\dfrac{24}{\sqrt{x}-6}\le12\)

\(\Leftrightarrow\dfrac{24-12\left(\sqrt{x}-6\right)}{\sqrt{x}-6}\le0\)

\(\Leftrightarrow24-12\sqrt{x}+72\le0\)

\(\Leftrightarrow-12\sqrt{x}\le-96\)

\(\Leftrightarrow\sqrt{x}\ge8\)

\(\Leftrightarrow x\ge64\)

Vậy \(x\ge64\) thì \(AB\le12\)

Bình Lê
Xem chi tiết
Charlet
Xem chi tiết
Ngô Hoài Thanh
Xem chi tiết
Bich Hong
Xem chi tiết
Võ Đông Anh Tuấn
22 tháng 5 2018 lúc 13:26

a ) \(\sqrt{6+\sqrt{35}}.\sqrt{6-\sqrt{35}}=1\)

\(\Leftrightarrow VT=\sqrt{\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)}\)

\(\Leftrightarrow VT=\sqrt{6^2-35}=\sqrt{1}=1=VP\)

b ) \(VT=\left(\sqrt{2}-1\right)^2=2+1-2\sqrt{2}=3-2\sqrt{2}\)

\(VP=\sqrt{9}-\sqrt{8}=3-2\sqrt{2}\)

=> \(VT=VP.\)