Tìm x, y biết :
x - y = x . y = x : y ( y khác 0 )
Tìm tỉ số : x+y/x-y biết x/y =a ( x khác y khác 0)
tìm tỉ số x+y/x-y biết rằng x/y=a (x khác y và y khác 0)
Tìm số hữu tỉ x;y biết:
a) x+y=xy=x-y=x:y (y khác 0)
b)2(x+y)=x-y=x:y (y khác 0)
Tìm x,y biết:
x - y = 3 * [ x + y ] = x y = x / y [ y khác 0]
Tìm số nguyên x,y biết
x + y = x . y = x : y (y khác 0)
\(x+y=xy\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Mà \(x,y\)nguyên nên ta có bảng sau:
x-1 | 1 | -1 |
y-1 | 1 | -1 |
x | 2 | 0 |
y | 2 | 0 |
Thử lại không có trường hợp nào thỏa mãn.
tìm các số x, y biết: x+y=x.y=x/y (y khác 0)
tìm x,y,z biết : x/(z+y+1) = y/(x+z+1) = z-(x+y-z) = x+y+z ( x,y,z khác 0 )
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y (y khác 0)
b). x-y=x.y=x:y (y khác 0)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
a) x+y = xy = x:y
* xy = x:y
=> xy . y = x
x . y^2 = x
xy^2 - x = 0
x( y^2 - 1 ) = 0
=> x=0 => x=0
y^2 - 1 = 0 y=+- 1
* x+y = xy
+) x=0 => 0+y = 0.y =0
y=0 (loaị)
+) y=1 => x+1 = x.1
1=0 (loại)
+) y= (-1) => x-1 = x.(-1)
x-1=x
x + x= 1
=> x=1/2
Vậy x= 1/2 ; y= -1
tìm 2 số hửu tỉ x,y biết: x-y=2(x+y) và x-2y=3x/y(y khác 0)
Answer:
Có:
\(x-y=2\left(x+y\right)\)
\(\Rightarrow x-y=2x+2y\)
\(\Rightarrow x=-3y\)
Ta thay \(x=-3\) vào \(-2y=3\frac{x}{y}\)
\(-3y-2y=3.\frac{-3y}{y}\)
\(\Rightarrow-5y=9\)
\(\Rightarrow y=\frac{9}{5}\)
\(\Rightarrow x=-3.\frac{9}{5}=\frac{-27}{5}\)