Có tồn tại hay không
các số tự nhiên : 55a+60b=2016
thỏa mãn : 55.a+60.b=2016
có tồn tại không : 55.a+60.b=2016
Có tồn tại hay không các số tự nhiên a, b thỏa mãn: (3a+2b)(7a+3b)=19*08*1945
Có tồn tại hay không 2 số tự nhiên a,b sao cho:
a, 55a +45b=3658
b, 400a+84b=40002
ta có 55a có tận cùng là 0 hoặc 5
45b có tân cụng là 0 hoặc 5
nên 55a+45b có tận cụng là 0 hoặc 5 mà giả thiết cho là 3658 nên loại
Câu hỏi của đồng tiến đạt - Toán lớp 6 - Học toán với OnlineMath
Có tồn tại hay không số nguyên n thỏa mãn:
n3+2016.n = 20082007+4
làm bằng phản chứng + quy nạp thử xem
giả sử tồn tại điều trên ( phản chứng)
giả sử bất đẳng thức trên đúng vs n = k.=>k^3+2016k = 2008^2007+4
vậy ta thử với n bằng k+1. từ đó làm để đưa dần về là ta CM xong
Có tồn tại hay không một số tự nhiên tận cùng là 2016 chia hết cho 2017?
có tồn tại hay không 1 số tự nhiên tận cùng là 2016 chia hết cho 2017
Chắc chắn có và có vô số số như vậy. Mình chỉ ra đây 1 họ số như thế.
Xét số 20162016...2016 có n bộ số 2016
Lấy tùy ý 2017 số như vậy bằng cách thay các giá trị n khác nhau (n thuộc N+)
Xét thương của 2017 số này với 2017.
Nếu có 1 số chia hết cho 2017 => tìm được 1 số có tận cùng là 2016 mà chia hết cho 2017Nếu không có số nào chia hết cho 2017 thì ta sẽ có thể có 2017 số dư. Mà phép chia có dư cho 2017 chỉ có thể có nhiều nhất 2016 số dư khác nhau nên theo Directle thì có ít nhất 1 cặp số có cùng số dư. Giả sử cặp đó là: Ap = 20162016...2016 (p bộ số 2016) và Aq 20162016...2016 (q bộ số 2016) (p>q).Hiệu Ap - Aq sẽ chia hết cho 2017 (vì Ap; Aq có cùng số dư khi chia ch 2017)
Mà Hiệu Ap - Aq = 20162016...2016000...000 (có 4*q số 0 và p-q bộ số 2016)
= 20162016...2016*100..000 chia hết cho 2017
Mà 2017 là số nguyên tố và 100...000 không chia hết cho 2017 nên số 20162016...2016 (p-q bộ số 2016) phải chia hết cho 2107 - đpcm.
Chắc chắn có và có vô số số như vậy. Mình chỉ ra đây 1 họ số như thế.
Xét số 20162016...2016 có n bộ số 2016
Lấy tùy ý 2017 số như vậy bằng cách thay các giá trị n khác nhau (n thuộc N+)
Xét thương của 2017 số này với 2017.
Nếu có 1 số chia hết cho 2017 => tìm được 1 số có tận cùng là 2016 mà chia hết cho 2017Nếu không có số nào chia hết cho 2017 thì ta sẽ có thể có 2017 số dư. Mà phép chia có dư cho 2017 chỉ có thể có nhiều nhất 2016 số dư khác nhau nên theo Directle thì có ít nhất 1 cặp số có cùng số dư. Giả sử cặp đó là: Ap = 20162016...2016 (p bộ số 2016) và Aq 20162016...2016 (q bộ số 2016) (p>q).Hiệu Ap - Aq sẽ chia hết cho 2017 (vì Ap; Aq có cùng số dư khi chia ch 2017)
Mà Hiệu Ap - Aq = 20162016...2016000...000 (có 4*q số 0 và p-q bộ số 2016)
= 20162016...2016*100..000 chia hết cho 2017
Mà 2017 là số nguyên tố và 100...000 không chia hết cho 2017 nên số 20162016...2016 (p-q bộ số 2016) phải chia hết cho 2107 - đpcm.
Chắc chắn có và có vô số số như vậy. Mình chỉ ra đây 1 họ số như thế.
Xét số 20162016...2016 có n bộ số 2016
Lấy tùy ý 2017 số như vậy bằng cách thay các giá trị n khác nhau (n thuộc N+)
Xét thương của 2017 số này với 2017.
Nếu có 1 số chia hết cho 2017 => tìm được 1 số có tận cùng là 2016 mà chia hết cho 2017Nếu không có số nào chia hết cho 2017 thì ta sẽ có thể có 2017 số dư. Mà phép chia có dư cho 2017 chỉ có thể có nhiều nhất 2016 số dư khác nhau nên theo Directle thì có ít nhất 1 cặp số có cùng số dư. Giả sử cặp đó là: Ap = 20162016...2016 (p bộ số 2016) và Aq 20162016...2016 (q bộ số 2016) (p>q).Hiệu Ap - Aq sẽ chia hết cho 2017 (vì Ap; Aq có cùng số dư khi chia ch 2017)
Mà Hiệu Ap - Aq = 20162016...2016000...000 (có 4*q số 0 và p-q bộ số 2016)
= 20162016...2016*100..000 chia hết cho 2017
Mà 2017 là số nguyên tố và 100...000 không chia hết cho 2017 nên số 20162016...2016 (p-q bộ số 2016) phải chia hết cho 2107 - đpcm.
a)cho n là số tự nhiên lẻ. Tìm số dư khi chia n^2 cho 8.
b)Có hay không 3 số tự nhiên lẻ a,b,c thỏa mãn: a^2+b^2-c^2=2016.
n^2= (2k+1)^2=4k^2+4k+1
k=2t=> 16t^2+8t+1 chia 8 luon du 1
k=(2t+1)=> 4(4t^2+4t+1) +4(2t+1)+1=16t^2+24t+8+1 chia 8 du 1
ket luan: so du n^2 chia 8 luon du 1
a^2+b^2-c^2=2016=2^3.3^2.23
4m^2+4m+4n^2+4n-4p^2-4p+2=2016
2(m^2+m+n^2+n-p^2-p)+1=1008 => khong ton tai
VP chan VT luon le
bài này khó quá, tớ làm được nhưng dài lắm
có tồn tại hay không các số tự nhiên thỏa mãn đồng thời các đẳng thức sa:abc+a=999;abc+b=99;abc+c=9
Tồn tại hay không các số tự nhiên a,b,c,d thỏa mãn:
abcd-a=1961; abcd-b=961 ;abcd-c= 61; abcd-d=1
khong co stn abcd nao thoa man