Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Biện Văn Hùng
Xem chi tiết
Lê Trung Kiên
Xem chi tiết
Nguyễn Quỳnh Chi
9 tháng 6 2016 lúc 23:49

(x+y+z)^2=0

x^2+y^2+z^2+2xy +2yz+2xz=0

x^2+y^2+z^2+2(xy+yz+xz)=0

Vì xy + yz +xz=0 nên x^2+y^2+z^2=0.

Vì x^2, y^2, z^2 luôn lớn hơn hoặc bằng 0 mà x^2+y^2+z^2=0.Vì vậy:

x^2=0, y^2=0, z^2=0

x=y=z=0

Thay x=y=z=o vào S ta được: S=1

Chíu Nu Xíu Xiu
Xem chi tiết
Nhỏ Ma Kết
1 tháng 6 2016 lúc 21:33

Vì |x-2015| |\(\ge\) 0 và |y+2016| \(\ge\) 0

=>|x-2015| + |y+2016| - 20 \(\ge\) -20 (Vậy có nghĩa giá trị nhỏ nhất có thể có sẽ là -20)

Dấu "=" xảy ra khi:

|x-2015|=0            và    |y+2016|=0

 x-2015 =0                    y+2016 =0

x           =2015              y            =-2016

Vậy GTNN của H=-20 khi x=2015 và y=-2016

  

nguyễn quang huy
Xem chi tiết
nguyen duc thang
10 tháng 3 2018 lúc 22:14

Vì l x + 2015 l \(\ge\)0 với mọi x thuộc Z

l y - 2016 l \(\ge\)0 với mọi x thuộc Z

mà l x + 2015 l + l y -2016 l = 0

=> \(\hept{\begin{cases}x+2015=0\\y-2016=0\end{cases}}\)=> \(\hept{\begin{cases}x=-2015\\y=2016\end{cases}}\)

_Guiltykamikk_
10 tháng 3 2018 lúc 23:22

Do |x+2015| ≥ 0 với mọi x

      |y-2016| ≥ 0 với mọi y

Suy ra |x+2015| + |y-2016| ≥ 0 với mọi x;y

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\\\end{cases}}\)

Đồng thời x+2015 và y-2016 bằng 0

=) (x;y)=(-2015;2016)

Hắc Hàn Thiên Nhi
Xem chi tiết
Nguyễn Linh Chi
9 tháng 12 2019 lúc 21:46

Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)

=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)

\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)

Vậy gtnn của M = 2018 đạt tại x = y = 0.

Khách vãng lai đã xóa
Lê Viết Minh Hiếu
Xem chi tiết
Nguyễn Trâm Anh
Xem chi tiết
Nguyễn Văn Tùng
Xem chi tiết
 .
Xem chi tiết
Không Tên
25 tháng 9 2018 lúc 21:27

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

Sắc màu
25 tháng 9 2018 lúc 21:41

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016