Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Thi Hoai Thu
Xem chi tiết
Thắng Nguyễn
5 tháng 4 2016 lúc 12:29

a) a+n/b+n=a/b

vì a+n/b+n rút gọn n ta sẽ đc a/b

b) Nhân A với 10 ta được \(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}\)

\(10A=\frac{10^{12}-10}{10^{12}-1}\)

\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)

\(10A=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)

Nhân B với 10 rồi giải tương tự như A ta được

\(10B=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)

ta thấy: 1012-1>1011+1\(\Rightarrow\frac{9}{10^{12}-1}<\frac{9}{10^{11}+1}\) ( vì 2 ps cùng tử ps nào có tử bé hơn thì ps đó lớn hơn)

=>10B>10A

=>B>A

Phạm Thị Lệ Quyên
Xem chi tiết
Na Bong Pé Con
Xem chi tiết
Cool Girl
2 tháng 1 2016 lúc 15:00

10a<12a

(-10a)>(-12a)

Nguyễn Ngọc Quý
2 tháng 1 2016 lúc 15:01

Nếu a = 0 

Thì 10a = 12a

-10a = -12a

Nếu a > 0 

10a < 10a + 2a = 12a

-10a > -10 -2a = -12a

Nếu a <  0

10a > 10a +  2a = 12a

-10a <  -10 - 2a = -12a 

Na Bong Pé Con
Xem chi tiết
soyeon_Tiểu bàng giải
21 tháng 7 2016 lúc 18:49

+ Nếu a > b

=> a.n > b.n

=> a.n + ab > b.n + ab

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n

Lm tương tự với trường hợp a < b

tran huu vien
Xem chi tiết
o0o Hinata o0o
13 tháng 6 2016 lúc 11:25

Ta có : \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)

Ta có mẫu gồm các chữ số > 0=> mẫu dương: n> 0. Nếu a > b => a - b > 0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0=>\frac{a}{b}>\frac{a+n}{b+n}\)

Nếu a < b <=> a - b < 0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}< 0=>\frac{a}{b}< \frac{a+n}{b+n}\)

Vậy đó mik nha

Carina Annie Marion
13 tháng 6 2016 lúc 11:31

Ta có:

\(\frac{a}{b}\)=\(\frac{a\left(b+n\right)}{b\left(b+n\right)}\)=\(\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}\)=\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)=\(\frac{ab+bn}{b\left(b+n\right)}\)

Vì n \(\in\)N nên n có thể bằng 0.

Nếu n=0 => \(\frac{a+n}{b+n}\)=\(\frac{a+0}{b+0}\)=\(\frac{a}{b}\)

Theo đề ta có: 

   a > b => ab+an>ab+bn

=> \(\frac{a}{b}\)>\(\frac{a+n}{b+n}\)

bui thi ngo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2017 lúc 5:23

a, Ta có  10 30 = 10 3 10 = 1000 10

2 100 = 2 10 10 = 1024 10

Vì 1000<1024 nên  1000 10 <  1024 10

Vậy  10 30 <  2 100

b, Ta có:  333 444 = 333 4 111 = 3 . 111 4 111 =  81 . 111 4 111

444 333 = 444 3 111 = 4 . 111 3 111 =  64 . 111 3 111

Vì 81 > 64 và  111 4 > 111 3 nên  81 . 111 4 111 > 64 . 111 3 111

Vậy  333 444 > 444 333

c, Ta có:  21 5 = 3 . 7 15 = 3 15 . 7 15

27 5 . 49 8 = 3 3 5 . 7 2 8 = 3 15 . 7 16

Vì  7 15 < 7 16 nên  3 15 . 7 15 < 3 15 . 7 16

Vậy  21 5 <  27 5 . 49 8

d, Ta có:  3 2 n = 3 2 n = 9 n

2 3 n = 2 3 n = 8 n

Vì 8 < 9 nên  8 n < 9 n n ∈ N *

Vậy  3 2 n >  2 3 n

e, Ta có: 2017.2018 = (2018–1).(2018+1) = 2018.2018+2018.1–1.2018–1.1

=  2018 2 - 1

Vì  2018 2 - 1 < 2018 2 nên 2017.2018< 2018 2

f, Ta có:  100 - 99 2000 = 1 2000 = 1

100 + 99 0 = 199 0 = 1

Vậy  100 - 99 2000 =  100 + 99 0

g, Ta có:  2009 10 + 2009 9 = 2009 9 . 2009 + 1

=  2010 . 2009 9

2010 10 = 2010 . 2010 9

Vì  2009 9 < 2010 9 nên  2010 . 2009 9 <  2010 . 2010 9

Vậy  2009 10 + 2009 9 <  2010 10

bui thi phuong anh
Xem chi tiết
Nguyễn Ngọc Linh
21 tháng 3 2020 lúc 14:44

A. \(3^{24680}\)và \(2^{37020}\)

\(3^{24680}=\left(3^2\right)^{12340}=9^{12340}\)

\(2^{37020}=\left(2^3\right)^{37020}=8^{12340}\)

Vì \(8< 9\Rightarrow8^{12340}< 9^{12340}\)

\(\Rightarrow3^{24680}>2^{37020}\)

\(B.3^{2n}\)và \(2^{3n}\)

\(3^{2n}=9^n\)

\(2^{3n}=8^n\)

\(Vì\)\(8< 9\Rightarrow8^n< 9^n\)

\(\Rightarrow3^{2n}>2^{3n}\)

học tốt

Khách vãng lai đã xóa
Nguyen Thi Lan
Xem chi tiết