so sanh 32n va 23n voi n thuoc N*
a, Cho a, b , n thuoc N*. Hay so sanh a + n/ b + n voi a/b
B Cho A= 1011 - 1/ 1012 - 1 va B= 1010+ 1/ 1011+ 1. Hay so sanh Avoi B
a) a+n/b+n=a/b
vì a+n/b+n rút gọn n ta sẽ đc a/b
b) Nhân A với 10 ta được \(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)
\(10A=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)
Nhân B với 10 rồi giải tương tự như A ta được
\(10B=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)
ta thấy: 1012-1>1011+1\(\Rightarrow\frac{9}{10^{12}-1}<\frac{9}{10^{11}+1}\) ( vì 2 ps cùng tử ps nào có tử bé hơn thì ps đó lớn hơn)
=>10B>10A
=>B>A
so sanh phan so:
a) n/n + 3 va n - 1/n+4 ( n thuoc N)
b) n/n + 1 va n + 2/n + 3
c) n/2n + 1 va 3n + 1/6n + 3 ( n thuoc N)
Hay so sanh 10a va 12a
(-10)a va (-12)a voi a thuoc z
Nếu a = 0
Thì 10a = 12a
-10a = -12a
Nếu a > 0
10a < 10a + 2a = 12a
-10a > -10 -2a = -12a
Nếu a < 0
10a > 10a + 2a = 12a
-10a < -10 - 2a = -12a
So sanh a/b (b>0) va a+n/b+n(n thuoc N*)
+ Nếu a > b
=> a.n > b.n
=> a.n + ab > b.n + ab
=> a.(b + n) > b.(a + n)
=> a/b > a+n/b+n
Lm tương tự với trường hợp a < b
cho a,b,n thuoc n va a>b so sanh a/b va a+n/b+n
Ta có : \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)
Ta có mẫu gồm các chữ số > 0=> mẫu dương: n> 0. Nếu a > b => a - b > 0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0=>\frac{a}{b}>\frac{a+n}{b+n}\)
Nếu a < b <=> a - b < 0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}< 0=>\frac{a}{b}< \frac{a+n}{b+n}\)
Vậy đó mik nha
Ta có:
\(\frac{a}{b}\)=\(\frac{a\left(b+n\right)}{b\left(b+n\right)}\)=\(\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}\)=\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)=\(\frac{ab+bn}{b\left(b+n\right)}\)
Vì n \(\in\)N nên n có thể bằng 0.
Nếu n=0 => \(\frac{a+n}{b+n}\)=\(\frac{a+0}{b+0}\)=\(\frac{a}{b}\)
Theo đề ta có:
a > b => ab+an>ab+bn
=> \(\frac{a}{b}\)>\(\frac{a+n}{b+n}\)
a)cho a,b,n thuoc N*.hay so a=n/b=n va a/b so sanh
b)choA=10^11-1/10^12-1;B=10^10+1/10^11+1.So sanh A va B
So sánh.
a, 10 30 và 2 100
b, 333 444 và 444 333
c, 21 5 và 27 5 . 49 8
d, 3 2 n và 2 3 n n ∈ N *
e, 2017.2019 và 2018 2
f, 100 - 99 2000 và 100 + 99 0
g, 2009 10 + 2009 9 và 2010 10
a, Ta có 10 30 = 10 3 10 = 1000 10
2 100 = 2 10 10 = 1024 10
Vì 1000<1024 nên 1000 10 < 1024 10
Vậy 10 30 < 2 100
b, Ta có: 333 444 = 333 4 111 = 3 . 111 4 111 = 81 . 111 4 111
444 333 = 444 3 111 = 4 . 111 3 111 = 64 . 111 3 111
Vì 81 > 64 và 111 4 > 111 3 nên 81 . 111 4 111 > 64 . 111 3 111
Vậy 333 444 > 444 333
c, Ta có: 21 5 = 3 . 7 15 = 3 15 . 7 15
27 5 . 49 8 = 3 3 5 . 7 2 8 = 3 15 . 7 16
Vì 7 15 < 7 16 nên 3 15 . 7 15 < 3 15 . 7 16
Vậy 21 5 < 27 5 . 49 8
d, Ta có: 3 2 n = 3 2 n = 9 n
2 3 n = 2 3 n = 8 n
Vì 8 < 9 nên 8 n < 9 n n ∈ N *
Vậy 3 2 n > 2 3 n
e, Ta có: 2017.2018 = (2018–1).(2018+1) = 2018.2018+2018.1–1.2018–1.1
= 2018 2 - 1
Vì 2018 2 - 1 < 2018 2 nên 2017.2018< 2018 2
f, Ta có: 100 - 99 2000 = 1 2000 = 1
100 + 99 0 = 199 0 = 1
Vậy 100 - 99 2000 = 100 + 99 0
g, Ta có: 2009 10 + 2009 9 = 2009 9 . 2009 + 1
= 2010 . 2009 9
2010 10 = 2010 . 2010 9
Vì 2009 9 < 2010 9 nên 2010 . 2009 9 < 2010 . 2010 9
Vậy 2009 10 + 2009 9 < 2010 10
so sanh
A / 3^24680 va 2^37020
B / 3^2n va 2^3n (n thuoc N*)
A. \(3^{24680}\)và \(2^{37020}\)
\(3^{24680}=\left(3^2\right)^{12340}=9^{12340}\)
\(2^{37020}=\left(2^3\right)^{37020}=8^{12340}\)
Vì \(8< 9\Rightarrow8^{12340}< 9^{12340}\)
\(\Rightarrow3^{24680}>2^{37020}\)
\(B.3^{2n}\)và \(2^{3n}\)
\(3^{2n}=9^n\)
\(2^{3n}=8^n\)
\(Vì\)\(8< 9\Rightarrow8^n< 9^n\)
\(\Rightarrow3^{2n}>2^{3n}\)
học tốt
Cho hai so huu ti x va y voi 0<x=a/b<1, y =a+c/b+c,c thuoc Z. Hay so sanh x va y