Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Hoài Phúc
Xem chi tiết
hoang dinh nhan
Xem chi tiết
Cao Hoài Phúc
Xem chi tiết
Cao Hoài Phúc
Xem chi tiết
Cao Hoài Phúc
Xem chi tiết
Quần Mật Ong
Xem chi tiết
nguyenthikimphung
Xem chi tiết
Đặng Quỳnh Như
Xem chi tiết
Nguyễn Thanh Hằng
2 tháng 9 2017 lúc 14:44

Đặt:

\(A=2x^2-6x\)

\(A=2x^2-6x+\dfrac{9}{2}-\dfrac{9}{2}\)

\(A=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\)

\(A=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

\(2\left(x+\dfrac{3}{2}\right)^2\ge0\) nên \(A=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" xảy ra khi:

\(x=-\dfrac{3}{2}\)

Trịnh Ngọc Hân
2 tháng 9 2017 lúc 14:55

\(2x^2-6x\)

\(=2.\left(x^2-3x\right)\)

=\(2\left[x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3^{ }}{2}\right)^2-\left(\dfrac{3}{2}\right)^2\right]\)

\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2\right]\)

=\(2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\ge2\left(0-\dfrac{9}{4}\right)\ge0\)

Vậy GTNN của biểu thức là\(\dfrac{-9}{2}\) xẩy ra khi \(x=\dfrac{3}{2}\)

Nguồn: OLM

Bạn học tốt nhé!

Trần Quốc Lộc
2 tháng 9 2017 lúc 15:34

\(2x^2-6x\\ =2x^2-6x+\dfrac{9}{2}-\dfrac{9}{2}\\ =2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ =2\left[x^2-2\cdot x\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right]-\dfrac{9}{2}\\ =2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

\(\text{Ta có: }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi:

\(2\left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow \left(x-\dfrac{3}{2}\right)^2=0\\\Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(GTNN\) của biểu thức là \(-\dfrac{9}{2}\) khi \(x=\dfrac{3}{2}\)

Lê quỳnh phương Kha
Xem chi tiết