Cho an=1+2+3+...+n
a) Tính an+1
b) Chứng minh rằng an + an+1 là một số chính phương.
1) Cho a^2+b^2/c^2+d^2=a.b/c.d với a,b,c,d khác 0 . Hãy Chứng Minh rằng a/b=c/d hoặc a/b=d/c
2) Tính tổng : A = c/a1.a2 + c/a2.a3 + .......+c/an-1.an Và a2 -a1=a3-a2=....=an-an-1 =k ( a1 là số hạng đầu tiêng , an là số hạng thứ n)
Chứng Minh: Với mọi số tự nhiên n thì an=n(n+1)(n+2)(n+3)+1 là số chính phương
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Chứng minh : Với mọi số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Cho dãy số (an) xác định bởi: a1=5; an= an-1 + 3n ∀ n ≥ 2. Chứng minh dãy số bn= an+1 - an ∀ n ≥ 2 là một cấp số cộng.
cho dãy số:1,1,2,3,5,8,13,.... trong đó mỗi số hạng, kể từ số thứ 3, bằng tổng của 2 số hạng đứng liền trước. Chứng minh rằng an-1+an+1/an+an+2 là phân số tối giản với mọi n>=2
đề thấy hơi chán,từ số kia =2an,mẫu số cx chia hết cho 2 thì sao tối giản đc hả bạn ơi
Bài toán 1 : Chứng minh : Với mọi số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50
cho n số nguyên a1,a2,a3,...,an
chứng minh rằng
S=|a1-a2|+|a2-a3|+...+|an-1-an|+|an-a1|
mấy số đằng sau a là số thứ tự nhé
Hai bạn Bình và An mỗi bạn viết ra một số. Lấy số của Bình viết cộng thêm 1 rồi nhân với số của An thì được một số là số chính phương. Lấy số của An cộng thêm 1 rồi nhân với số của Bình thì ta được một số là số chính phương. Nếu cho số của Bình là 8 còn số của An viết là một số nguyên lớn 1, nhỏ hơn 100 thì số An viết ra là số nào
Bài 1:Cho các số thực a,b,c thỏa mãn a^3 - b^2 - b = b^3 - c^2 - c = c^3 - a^2 - a =1/3. Chứng minh rằng a=b=c
Bài 2:Cho các số nguyên a1,a2,a3,...,an có tổng chia hết cho 3. Chứng minh P= a1^3 + a2^3 + a3^3 + ... +an^3 chia hết cho 3
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3