Cho (A=>B) đúng. Chứng minh: (B=>C) => (A=>B) đúng.
cho \(\left(A\Rightarrow B\right)\)đúng . Chứng minh :\(\left(B\Rightarrow C\right)\Rightarrow\left(A\Rightarrow C\right)\)ĐÚNG
Bằng phản chứng giả sử \(\left(B\Rightarrow C\right)\Rightarrow\left(A\Rightarrow C\right)\)sai
Khi đó \(B\Rightarrow C\)đúng và \(A\Rightarrow C\)sai
(Nhớ rằng mệnh đề Giả thiết - Kết luận chỉ sai khi Giả thiết đúng và Kết luận sai)
Vì \(A\Rightarrow B\)và \(B\Rightarrow C\)đều đúng nên \(A\Rightarrow B\Rightarrow C\)đúng
Lúc này \(A\Rightarrow C\)đúng ----> Mâu thuẫn giả thiết ---> Đề bài đúng.
Cho a+b/a-b = c+a/c-a với a khác b ; a khác c. Chứng minh a^2=bc. Điều ngược lại có đúng không? Vì sao?
Cho: a/2017 = b/2018 = c/2019. Chứng minh rằng: 4. (a-b). (b-c)= (c-a)^2
Ai nhanh và đúng mình sẽ tick
chứng minh a(b+c)+d(b+c)=(a+d)(b+c) làm đầu tiên mk tick đúng
Áp dụng : a.b + a.c = a.( b + c )
=> a.( b + c ) + d.( b + c ) = ( a + d ) ( b + c )
Ta có VT : a ( b+c) + d ( b + c )
= ab + ac + bd + dc (1)
Lại có Vp
(a+d)(b+c) = ab + ac + bd + dc (2)
Từ 1 và 2 => a(b+c)+d(b+c) = (a+d)(b+c)
Cho \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\) với a khác b, c khác a. Chứng minh a2 = bc. Điều ngược lại có đúng không?
theo bài ra ta có:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)
=> \(\frac{a}{c}=\frac{b}{a}\)
=> a2= bc (đpcm)
vậy điều ngược lại hoàn toàn đúng
a) Cho a+b+c=0. Chứng minh a3+a2c-abc+b2c+b3=0
b) Cho a-2=x+y. Chứng minh ax+2x+ay+2y+4=a2
c) Cho A=1+x+x2+...x49. Chứng minh Ax-A=x50-1
d) Cho a2+c2=2b2. Chứng minh ( a+b)(a+c)+(c+a)(c+b)=2(b+a)(b+c)
Cần gấp ạ! Ai giải được 4 câu, đúng hết k nhé
a) a3+b3+a2c+b2c-abc
= (a+b)(a2-ab+b2)+c(a2+b2)-abc
=(a+b) [ (a+b)2-3ab]+c.[(a+b)2-2ab]-abc
=(a+b)(a+b)2-3ab(a+b)+c(a+b)2-3abc
=(a+b)2(a+b+c)-3ab(a+b+c)
=(a+b)2.0-3ab.0
=0
b) ax+ay+2x+2y+4
=a(x+y)+2(x+y)+4
=(x+y)(a+2)+4
=(a-2)(a+2)+4
=a2-4+4
=a2
c) A=1+x+x2+...+x49=>Ax=x+x2+x3+...+x50
- A=1+x+x2+...+x49
---> Ax-A=x50-1
d)(a+b)(a+c)+(c+a)(c+b)
=a2+ac+ab+bc+c2+bc+ac+ab
=a2+c2+2ac+2ab+2bc
=2b2+2bc+2ac+2ab
=2b(b+c)+2a(b+c)
=2b(b+c)(b+a)
chứng minh a, b,b c thuộc tập hợp số nguyên:
a( b + c ) - b( a + c ) = b( a - c ) - a( b - c )
đúng thì tớ tik cho há!
Chứng minh
0+a=a+o=a
a+b=b+a
(a+b)+c=a+(b+c)
là đúng
Cho a,b,c∈Ra,b,c∈R và a2+b2+c2=21a2+b2+c2=21. Chứng minh rằng: 7≤|a−2b|+|b−2c|+|c−2a|≤√3997≤|a−2b|+|b−2c|+|c−2a|≤399 Ý tưởng: ( Nhưng không chắc chắn là đúng hướng :'> ) Dùng bất đẳng thức Cauchy-Schwarz để chứng minh bài toán -> x1+x2+...+xn≤|x1|+|x2|+...+|xn|≤√n(x21+x22+...+x2n)
cho a,b,c,d >0 và 2(a+b+c+d)>-abcd chứng minh a^2+b^2+c^2+d^2>=abcd
bài 2 cho a,b,c>0 và a+b+c>=abc chứng minh có ít nhất 2 trong 3 bdt sau là đúng 2/a +3/b+ 6/c>=6 2/b + 3/c+ 6/a>=6 2/c + 3/a +6/b >=6