Tìm các số a,b,c biết rằng : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a +2b - 3c = -20
Tìm các số a , b, c biết rằng:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a + 2b - 3c = -20
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a}{2}=\frac{2b}{3.2}=\frac{3c}{4.3}\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\frac{a}{2}=5\Rightarrow a=10\)
\(\Rightarrow\frac{2b}{6}=5\Rightarrow2b=30\Rightarrow b=15\)
\(\Rightarrow\frac{3c}{12}=5\Rightarrow3c=60\Rightarrow x=20\)
Có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\)\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất của dãy tie soos bằng nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
=>\(\frac{a}{2}=5\Rightarrow a=10\)
\(\frac{2b}{6}=5\Rightarrow a=15\)
\(\frac{3c}{12}=5\Rightarrow c=20\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2}=\frac{2b}{2.3}=\frac{3c}{3.4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và \(a+2b-3c=-20\)
áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\frac{a}{2}=5\Rightarrow a=5.2=10\)
\(\frac{b}{3}=5\Rightarrow b=3.5=15\)
\(\frac{c}{4}=5\Rightarrow c=5.4=20\)
Tìm các số a, b, c, d, biết rằng : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a + 2b - 3c = -20
Ban vao day nha Tìm các số a,b,c biết rằng : a/2=b/3=c/4 và a+2b-3c=-20
TÌM các số a b c biết rằng : \(\frac{a}{2}\)= \(\frac{b}{3}\)= \(\frac{c}{4}\)và a + 2b - 3c = -20
bài này dễ mà bạn
bạn sử dụng tình chất dãy tỉ số bằng nhau là ra mà
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\Rightarrow a=10\)\(b=15,c=\)20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow a=10;b=15;c=20\)
Study well
Tìm các số a,b,c biết rằng:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và a+2b-3c=-49
Bài 1: Tìm các số a,b,c biết rằng
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) \(và\)\(a+2b-3c=-20\)
Bài 2: Tìm các số a,b,c biết rằng
\(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}và\)\(a-b+c=-49\)
1. Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}}\)
2. Ta có:\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=-7\\\frac{b}{15}=-7\\\frac{c}{12}=-7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=-70\\b=-105\\c=-84\end{cases}}\)
1. Ta có:a2 =b3 =c4 =a+2b−3c2+6−12 =−20−4 =5
a2 =5 |
b3 =5 |
c4 =5 |
a=10 |
b=15 |
c=20 |
2. Ta có:a2 =b3 ⇒a10 =b15
b5 =c4 ⇒b15 =c12
⇒a10 =b15 =c12 =a−b+c10−15+12 =−497 =−7
a10 =−7 |
b15 =−7 |
c12 =−7 |
a=−70 |
b=−105 |
c=−84 |
1. Tìm các số a,b,c,d biết rằng:
a:b:c:d=2:3:4:5và a+b+c+d = -42
2. Tìm các số a,b,c,biết rằng :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+ 2b-3c =-20
3. Tìm các số a,b,c biết rằng :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và \(a^2-b^2+2c^2=108\)
giúp mình các bn nhé
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8
Tìm số a,b,c bt rằng :\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a + 2b - 3c = -20
Theo bài ra,ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{-4}=\frac{-20}{-4}=5\)(vì a+2b-3c=-20)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\Rightarrow a=10\\\frac{b}{3}=5\Rightarrow b=15\\\frac{c}{4}=5\Rightarrow c=20\end{cases}}\)
Tìm các số a,b,c , biết rằng :
\(\frac{a}{2}\) = \(\frac{b}{3}\)= \(\frac{c}{4}\) vầ a + 2b - 3c = -20
a/2=2b/6=3c/12
Áp dụng t/chất dãy tỉ số bằng nhau ta có:
a/2=2b/6=3c/12=a+2b-3c/2+6-12=-20/-4=5
a/2=5=>a=2.5=10
2b/6=5=>b=6.5/2=15
3c/12=5=>c=12.5/3=20
vậy:a=10;b=15;c=20
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)=>\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
=>\(\frac{a}{2}=5\)=>\(a=10\)
\(\frac{b}{3}=5\)=>\(b=15\)
\(\frac{c}{4}=5\)=>\(c=20\)
Vậy a=10 ;b=15 ;c=20
có \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=>\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}.\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{20}{4}=5\)
*\(\frac{a}{2}=5=>a=10\)
*\(\frac{b}{3}=5=>b=15\)
*\(\frac{c}{4}=5=>c=20\)
vậy a=10;b=15;c=20
Tìm 3 số a,b,c biết \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b+3c=-20
áp dụng tính chât của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b+3c}{2+2.3+3.4}=\frac{-20}{20}=-1\)
suy ra:
\(\frac{a}{2}=-1\Rightarrow a=-2\)
\(\frac{b}{3}=-1\Rightarrow b=-3\)
\(\frac{c}{4}=-1\Rightarrow c=-4\)