Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đăng Hiếu
Xem chi tiết
Trần Đức Thắng
10 tháng 8 2015 lúc 21:41

3A = 3 + 3^2 + 3^3 + .. + 3^100+ 3^101

A = 1 + 3 + 3^2 + .. + 3^100 

3A - A = 3 + 3^2 + 3^3 + .. + 3^100 + 3^101 - 1 - 3 - 3^2 - ... - 3^100

           = 3^101 - 1

2A = 3^101 - 1 

2A + 3 = 3^101 - 1 + 3 = 3^ 101 + 2 khác 3^n 

=> không có n thỏa mãn 

Lê Chí Cường
10 tháng 8 2015 lúc 21:42

Ta có: A=1+3+32+…+3100

=>A.3=3+32+33+…+3101

=>A.3-A=3+32+33+…+3101-1-3-32-…-3100

=>A.2=3101-1

=>A.2+1=3101=3n

=>3101=3n

=>n=101

Vậy n=101

Lê Văn Luyện
Xem chi tiết
Nguyễn Minh Nguyệt
23 tháng 2 2018 lúc 20:57

 \(A=\frac{n+1}{n-3}\)điều kiện: n-3 khác 0\(\Rightarrow\)n khác 3

để \(A=\frac{n+1}{n-3}\)là số nguyên\(\Rightarrow\)n+1\(⋮\)n-3

\(\Rightarrow\)3(n+1)\(⋮\)n-3

\(\Rightarrow\)3n+3\(⋮\)n-3            (1)

mà n-3\(⋮\)n-3

\(\Rightarrow\)3(n-3)\(⋮\)n-3

\(\Rightarrow\)3n-9\(⋮\)n-3   (2)

từ (1)và(2)\(\Rightarrow\)(3n+3)-(3n-9)\(⋮\)n-3

3n+3-3n+9\(⋮\)n-3

12\(⋮\)n-3

n-3\(\in\)Ư12={\(\pm1,\pm2,\pm3,\pm4,\pm6,\pm12\)}

bạn tự thử nhé

Bùi Thái Ly
Xem chi tiết
le ah thuy
Xem chi tiết
Xíu Mụi
8 tháng 7 2015 lúc 19:20

1)

s1 = 499500

s2 = 1011010

s3 = 250901

nhichemgio
15 tháng 11 2016 lúc 17:15

cho a bang 963+2493+351+x voi x € n tim dieu kien cua x de a chia het cho 9 de a khong chia het cho 9

Nguyễn Thị Kim Ngân
Xem chi tiết
nguyen le phuong thi
Xem chi tiết
nguyễn thị thanh hiền
Xem chi tiết
Do huyền trang
3 tháng 2 2019 lúc 7:06

Toi quen mat cach  lam roi xin loi nhe

vu quang vinh
Xem chi tiết
huyenthoaikk
16 tháng 3 2021 lúc 20:58

Vì n thuộc N* => n thuộc {1;2;3;4;...}

Ta xét các trường hợp sau :

+ nếu n=1

Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )

+ nếu n=2

Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)

+Nếu n=3

khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)

+Với n>hoặc=4

Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3

Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0

=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)

Mà số chính phương không thể có chữ số tận cùng là 3

Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)

Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương

nguyen ngoc  anh
Xem chi tiết
nguyen ngoc  anh
8 tháng 12 2017 lúc 19:34

giup minh tra loi nha