Tính B=1+1/2(1+2)+1/3.(1+2+3)+...+1/20.(1+2..+20)
tính B= 1+ 1/2(1+2) +1/3(1+2+3)+...+1/20(1+2+3+...+20)
\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)\(=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+...+\dfrac{1}{20}.20.21:2\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+...+21}{2}\)
\(=\dfrac{230}{2}\)
\(=115\)
Tính B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
Tính B=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
tính B=1+1/2*(1+2)+1/3*(1+2+3)*1/4*(1+2+3+4)+...+1/20*(1+2+3+...+20)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+...+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=\frac{2}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{20+1}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{20}{2}\)
\(=\frac{2+3+4+...+20}{2}=\frac{\frac{20\left(20+1\right)}{2}-1}{2}=\frac{209}{2}\)
tính B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
tính : B=1+1/2 (1+2) + 1/3(1+2+3)+....+1/20(1+2+3+4+....+20)
B = 1+[1/2 (1+2) 2]/2 +[1/3 (1+2+3) 3]/2 +....+ [1/16 (1+2+3+...+20) 16] /2
B = 1+3/2 + 4/2 +...+ 17/2
B = 1/2 (2+3+4+....+17)
B= 1/2 [(2+7)16]/2
B= 76
Nhớ k cho mình nhé :D
TÍNH: B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
Tính B=1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+........+1/20*(1+2+3+...+20)
tính dùm mình nha thanks trước
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5 . TICH CHON MINH NHA CAC BAN THI CA NAM SE GAP NHIEU DIEU MAY MAN DAY
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5
Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n)
Do đó
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20)
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20)
=1+3/2 +4/2 +5/2 +... +21/2
=(2+3+4+5+...+20)/2=104,5
tính hợp lý
B=1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+....+1/20.(1+2+3+...+20)