Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
aiahasijc
Xem chi tiết
Thái Đức Hùng
29 tháng 4 2022 lúc 20:10

\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)\(=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+...+\dfrac{1}{20}.20.21:2\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+...+21}{2}\)
\(=\dfrac{230}{2}\)
\(=115\)

ÍìÍ Manbo ÍìÍ love ÌíÌ
Xem chi tiết
hotboy
Xem chi tiết
tạ quang vũ
Xem chi tiết
Đinh Đức Hùng
2 tháng 3 2017 lúc 19:29

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+...+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)

\(=\frac{2}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{20+1}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{20}{2}\)

\(=\frac{2+3+4+...+20}{2}=\frac{\frac{20\left(20+1\right)}{2}-1}{2}=\frac{209}{2}\)

Trần Phúc Thành
31 tháng 12 2024 lúc 20:52

Đinh Đức Hùng trả lời sai rồi

ke tui
Xem chi tiết
Bùi Thị Thu
Xem chi tiết
Bùi Phương Thùy
17 tháng 11 2016 lúc 21:14

B = 1+[1/2 (1+2) 2]/2 +[1/3 (1+2+3) 3]/2 +....+ [1/16 (1+2+3+...+20) 16] /2

B = 1+3/2 + 4/2 +...+ 17/2

B = 1/2 (2+3+4+....+17)

B= 1/2 [(2+7)16]/2

B= 76

Nhớ k cho mình nhé :D

Huyen Hoang
Xem chi tiết
Trang Lê Minh Hậu
Xem chi tiết
Lee Min Hoo
7 tháng 2 2016 lúc 11:33

Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có 
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n) 
Do đó 
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20) 
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20) 
=1+3/2 +4/2 +5/2 +... +21/2 
=(2+3+4+5+...+20)/2=104,5 . TICH CHON MINH NHA CAC BAN THI CA NAM SE GAP NHIEU DIEU MAY MAN DAY

Lee Min Hoo
7 tháng 2 2016 lúc 11:32

Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có 
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n) 
Do đó 
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20) 
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20) 
=1+3/2 +4/2 +5/2 +... +21/2 
=(2+3+4+5+...+20)/2=104,5 

Lee Min Hoo
7 tháng 2 2016 lúc 11:33

Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có 
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n) 
Do đó 
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20) 
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20) 
=1+3/2 +4/2 +5/2 +... +21/2 
=(2+3+4+5+...+20)/2=104,5 

Apple Nguyễn
Xem chi tiết