Tìm số ngyên n biết \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
Tìm \(n\in N\)
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+...+\left(n-1\right)\cdot2^{n-1}+n\cdot2^n=2^{n+34}\)
CÂU 5:
Tìm số tự nhiên n thoả mãn: \(2\cdot2^2+3\cdot2^3+4\cdot2^4+.....+n\cdot2^n=2^{n+5}\)
MÌNH TICK CHO
Tìm số tự nhiên n thỏa mãn \(2\cdot2^2+3\cdot2^3+...n\cdot2^n=2^{n+5}\)
Đặt \(A=2.2^2+3.2^3+...+n.2^n\)
\(\Rightarrow2A=2.2^3+3.2^4+...+n.2^{n+1}\)
\(\Rightarrow A-2A=\)\(2.2^2+3.2^3+...+n.2^n\)\(-2.2^3-3.2^4-...-n.2^{n+1}\)
\(\Rightarrow-A=2.2^2+2^3+2^4+...+2^n-n.2^{n+1}\)
\(\Rightarrow-A=2^2+\left(2^2+2^3+2^4+...+2^{n+1}\right)-\left(n+1\right).2^{n+1}\)
\(\Rightarrow A=-2^2-\left(2^2+2^3+2^4+...+2^{n+1}\right)+\left(n+1\right).2^{n+1}\)
Đặt \(K=\left(2^2+2^3+2^4+...+2^{n+1}\right)\)
\(2K=\left(2^3+2^4+2^5+...+2^{n+2}\right)\)
\(2K-K=\left(2^3+2^4+2^5+...+2^{n+2}\right)\)\(-\left(2^2+2^3+2^4+...+2^{n+1}\right)\)
\(K=2^{n+2}-2^2\)
\(\Rightarrow A=-2^2-2^{n+2}+2^2+\left(n+1\right).2^{n+1}\)
\(\Rightarrow A=\left(n+1\right).2^{n+1}-2^{n+2}\)
\(\Rightarrow A=2^{n+1}\left(n+1-2\right)\)
\(\Rightarrow A=2^{n+1}\left(n-1\right)=2^{n+5}\Rightarrow2^4=n-1\Rightarrow n=17\)
tìm n :\(2\cdot2^2+3.2^3+4\cdot2^4+.....+n\cdot2^n=2^{n+10}\)
tìm số nguyên x
a)\(27^n:3^n=9\)
b)\(\left(\frac{-1}{3}\right)^N=\frac{1}{81}\)c)\(\frac{25}{5^n}=5\)d)\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)e)\(\frac{81}{\left(-3\right)^n}=-243\)
Bn nào giải đc câu nào thì giải nhé ko giải đc câu nào thì thôi
Tìm n∈Z, biết :
a) \(\frac{1}{9}\cdot27^n=3^n\)
b) \(3^{-2}\cdot3^4\cdot3^n=3^7\)
c) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
d) \(32^{-n}\cdot16^n=2048\)
TÌM SỐ NGUYÊN n SAO CHO:
\(\frac{2^n}{2}\)+\(^{2^2\cdot2^n=9\cdot2^5}\)
\(\frac{2^n}{2}+2^2.2^n=9.2^5\)
=> \(2^{n-1}+2^{2+n}=2^5.9\)
=> \(2^{n-1}+2^{n-1+3}=2^5.9\)
=> \(2^{n-1}.\left(1+2^3\right)=2^5.9\)
=> \(2^{n-1}.9=2^5.9\)
=> \(2^{n-1}=2^5\)
=> \(n-1=5\)
Vậy n = 6.
Ta có:
\(\frac{2^n}{2}+2^2.2^n=2^{n-1}+2^3.2^{n-1}=2^{n-1}.\left(1+2^3\right)\)
\(=2^{n-1}.9=9.2^5\)
Chia cả 2 vế cho 9 thì có:
\(2^{n-1}=2^5\Rightarrow2^n=2^6\Rightarrow n=6\)
1 ) Tìm x biết
a) \(x^{10}\cdot\left(x^2\right)^{10}\cdot\left(x^3\right)^{10}\cdot...\cdot\left(x^{10}\right)^{10}\)
b)\(\frac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)
c)\(3\cdot2^{x+2}=5\cdot2^3\)
Bài 1 Tìm số tự nhiên x biết
a) \(2^{3x+2}=4^{x+5}\)
b) \(2^x+2^x+4=272\)
c) \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}=\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
d) \(2\cdot2^2+3\cdot2^2+4\cdot2^2+5\cdot2^2+...+x\cdot2^x=2^{x+10}\)
a) \(2^{3x+2}=4^{x+5}\Leftrightarrow2^{3x+2}=2^{2\left(x+5\right)}\Leftrightarrow2^{3x+2}=2^{2x+10}\)
\(\Rightarrow3x+2=2x+10\Leftrightarrow3x+2-2x-10\)
\(\Leftrightarrow x-8=0\Leftrightarrow x=8\) vậy \(x=8\)