Tìm x,y biết:
\(x-2xy+y-3=0\)
tìm x,y thuộc z biết
x-2xy+y-3=0
Ta có: x-2xy+y-3=0
=>-2xy+x+y=3
=>-2.(-2xy+x+y)=-2.3
=>4xy-2x-2y=-6
=>4xy-2x-2y+1=-6+1
=>2x(2y-1)-(2y-1)=-5
=>(2y-1)(2x-1)=-5=1.(-5)=-5.1=(-1).5=5.(-1)
Ta có bảng sau:
2y-1 | 1 | -5 | -1 | 5 |
y | 1 | -2 | 0 | 3 |
2x-1 | -5 | 1 | 5 | -1 |
x | -2 | 1 | 3 | 0 |
Vậy (x;y) E {(1;-2);(-2;1);(3;0);(0;3)}
Tìm các số nguyên x y biết x-2xy+y-3=0
Ta có: x-2xy+y-3=0
=>-2xy+x+y=3
=>-2.(-2xy+x+y)=-2.3
=>4xy-2x-2y=-6
=>4xy-2x-2y+1=-6+1
=>2x(2y-1)-(2y-1)=-5
=>(2y-1)(2x-1)=-5=1.(-5)=-5.1=(-1).5=5.(-1)
Ta có bảng sau:
2y-1 | 1 | -5 | -1 | 5 |
y | 1 | -2 | 0 | 3 |
2x-1 | -5 | 1 | 5 | -1 |
x | -2 | 1 | 3 | 0 |
Vậy (x;y) \(\in\){(-2;1);(1;-2);(3;0);(0;3)}
tìm các số nguyên x,y biết: x-2xy+y-3=0
=> 2x-4xy+2y-3 = 0
=> (2x-4xy)-(1-2y) - 2 = 0
=> 2x.(1-2y)-(1-2y) = 2
=> (1-2y).(2x-1) = 2
Đến đó bạn dùng quan hệ ước bội mà giải nha !
Tk mk nha
Tìm các số nguyên x y biết x-2xy+y-3=0
Để giải phương trình và tìm các cặp số nguyên , chúng ta có thể sử dụng phương pháp phân tích hệ số.
Đầu tiên, chúng ta có thể nhận thấy rằng phương trình có thể được viết lại dưới dạng:
Bây giờ, chúng ta có thể thử phân tích hệ số bằng cách chia phương trình thành các thành phần nhỏ hơn:
Giờ, chúng ta thấy rằng chúng ta có thể tách phần tử của x và y ra khỏi dấu ngoặc:
Bây giờ, chúng ta cần tìm tất cả các cặp số nguyên sao cho tích của và bằng 4. Cặp số nguyên thỏa mãn điều kiện này bao gồm:
Do đó, các cặp số nguyên thỏa mãn phương trình là:
Tìm các số nguyên x,y biết: x-2xy+y-3=0
\(x-2xy+y-3=0\)
\(\Leftrightarrow x-2xy+y=3\)
\(\Leftrightarrow2x-4xy+2y=6\)
\(\Leftrightarrow2x-2y\left(2x-1\right)=6\)
\(\Leftrightarrow\left(2x-1\right)-2y\left(2x-1\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=1.5=\left(-1\right)\left(-5\right)\)
Nếu \(2x-1=1\) thì \(1-2y=5\) \(\Rightarrow x=1\) thì \(y=-2\)
Nếu \(2x-1=5\) thì \(1-2y=1\) \(\Rightarrow x=3\)thì\(y=0\)
Nếu \(2x-1=-1\) thì \(1-2y=-5\) \(\Rightarrow x=0\)thì\(y=3\)
Nếu \(2x-1=-5\) thì \(1-2y=-1\) \(\Rightarrow x=-2\)thì\(y=1\)
Vậy \(\left(x;y\right)=\left(1;-2\right);\left(-2;1\right);\left(3;0\right);\left(0;3\right)\)
tìm số nguyên x,y biết
2xy-6=4x-y
x-2xy+y=0
x^2*y+2x^2+y=3
a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0 =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8 Ta có bảng sau :
2y-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
2x+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
y(yϵ\(ℤ\)) | 5/2(loại ) | 6(thỏa mãn) | 3(loại) | 4(loại) | 3/2( loại) | -2(thỏa mãn) | 1( loại) | 0(loại ) |
x(xϵ\(ℤ\)) | 7/2(loại) | 0(thỏa mãn) | 3/2( loại) | 1/2( loại) | -9/2( loại) | -1(thỏa mãn) | -5/2( loại) | -3/2( loại) |
Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)
Tìm các số nguyên x,y biết: x - 2xy + y - 3 = 0
\(x-2xy+y-3=0\Leftrightarrow2x-4xy+2y-6=0\Leftrightarrow2x-4xy+2y-1=5\)
\(\Leftrightarrow\left(2x-4xy\right)-\left(1-2y\right)=5\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=5\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
rồi bạn kẻ bảng xét x;y
\(\Leftrightarrow2x-4xy+2y-3=0\Leftrightarrow4xy-2x-2y+3=0\)
\(\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=-2\)
sau đó bạn dùng 2x-1 và 2y-1 là ước của -2 nhé, sẽ tìm được x và y
Tìm x, y biết: \(x-2xy+y-3=0\)
tìm x,y và z biết x^2-2xy+y^2+4y+5+(2z-3)^2=0
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,(3-x).(4y+1)=20 b,x(y + 2) + 2y =6 c,6xy + 4x - 3y = 8
d,2xy - x + 2y - 13 = 0 e,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)