Tìm GTNN của biểu thức : \(Q=x^2+2y^2-x+3y\) với x-2y=2
Tìm GTNN của các biểu thức :
a, P=2x^2+y^2-2xy-2x+2015
b, Q= x^2=2y^2-x+3y với x-2y=2
c, B=3x^2+y^2-8x+2xy+16
a) ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014
Đăngt thức xay ra khi x=y=1
\(\sqrt{x^2-6xy+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)
Tìm GTNN của biểu thức trên
Tìm GTNN của \(Q=x^2+2y^2-x+3y\) VỚI x - 2y =2
Cho x - 2y = 2. Tìm GTNN của Q = \(x^2+2y^2-x+3y\)
bạn thay x = 2y +2 vào Q rồi biến đổi thành hằng đẳng thức bình phương của 1 tổng hoặc 1 hiệu cộng (trừ) với 1 số. thì giá trị nhỏ nhất chính là giá trị của số đó. bạn tự biến đổi nhé không khó đâu
A.Tìm GTNN của biểu thức A=x^4-2x^2y+2x^2+3y^2-6y+2029
B.Tìm GTNN của A=3x^2-8x+6/x^2-2x+1
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
Tìm GTLN của biểu thức:
M = (x^2y^3 + x^3y^2 - x^2 + y^2 + 5) - (x^2y^3 + x^3y^2 + 2y^2 - 1)
tìm giá trị lớn nhất của biểu thức
A=(x^2y^3 + x^3y^2 -x^2+y^2 +5 ) -(x^2y^3 +x^3y^2 +2y^2 -1)
Cho x;y là những số thực thỏa mãn đẳng thức \(x^2y^2+2y+1=0\)Tính GTLN và GTNN của biểu thức
\(P=\frac{xy}{3y+1}\)
Tìm GTNN của biểu thức
A=(5x-3y-2)2+x2+y2+2xy+2x+2y+5
A=(5x-3y-2)2 + (x+y+1)2 + 4
Vậy giá trị nhỏ nhất của A là 4