Tìm tọa độ gđ của cặp đường thẳng sau:
y=2x+4
y=2x-3
1/Xác định hàm số bậc nhất y=ax+b biết đồ thị của nó song song với đường thẳng y=2x-3 và cắt trục tung tại điểm có tung độ bằng 5
2/ a.Vẽ trên cùng mặt phẳng tọa độ Oxy đồ thị của các hàm số sau:y=-2x+5(d1) ; y=x+2(d2)
b. Tìm tọa độ giao điểm M của hai đường thẳng (d1) và (d2)
c. Tính góc αα tạo bởi đường thẳng (d2) và trục hoành Ox
Tìm tọa độ giao điểm của đường thẳng d: x- 2y + 3= 0 và đường tròn (C): x2+ y2- 2x – 4y = 0
A. (3; 3) và (-1; 1)
B. (1;1) và (-3;3)
C. (3; -3)
D. Đáp án khác
Tọa độ giao điểm của đường thẳng và đường tròn là nghiệm của hệ phương trình sau
hoặc
Vậy tọa độ giao điểm là (3;3) và (-1; 1) .
Chọn A.
tìm tọa độ GĐ của đường thang (d):y=2x-3 với parabol (p):y=x^2
Phương trình hoành độ giao điểm
x2 = 2x - 3
<=> x2 - 2x + 3 = 0
<=> (x - 1)2 = - 2 (vô lý)
=> (d) ; (p) không cắt nhau
cho 2 hàm số y=x+2 và -1/2x +1
aVẽ (d1) và (d2) trên cùng hệ trục tọa độ
b xác định tọa độ GĐ của d1 và d2
c Viết PT Đg thẳng d3 đi qua O(0,0) và // với d1. tìm tọa độ GĐ M của d3 và d1
Vẽ mỗi cặp đường thẳng sau trong cùng một mặt phẳng tọa độ rồi tìm tọa độ giao điểm của hai đường thẳng đó.4x + 5y = 20 và 2x + 2,5y = 5.
*Ta có: 4x + 5y = 20 ⇔ y = -0,8x + 4
Cho x = 0 thì y = 4 ⇒ (0; 4)
Cho y = 0 thì x = 5 ⇒ (5; 0)
*Ta có: 2x + 2,5y = 5 ⇔ y = -0,8x + 2
Cho x = 0 thì y = 2 ⇒ (0; 2)
Cho y = 0 thì x = 2,5 ⇒ (2,5; 0)
Hai đường thẳng có hệ số góc bằng nhau nhưng hệ số tự do khác nhau nên chúng song song với nhau. Suy ra chúng không có giao điểm chung.
Đồ thị:
Vẽ mỗi cặp đường thẳng sau trong cùng một mặt phẳng tọa độ rồi tìm tọa độ giao điểm của hai đường thẳng đó. 2x + y = 1 và 4x – 2y = -10
*Ta có: 2x + y = 1 ⇔ y = -2x + 1
Cho x = 0 thì y = 1 ⇒ (0; 1)
Cho y = 0 thì x = 1/2 ⇒ (1/2 ; 0)
*Ta có: 4x – 2y = -10 ⇔ y = 2x + 5
Cho x = 0 thì y = 5 ⇒ (0; 5)
Cho y = 0 thì x = - 5/2 ⇒ (- 5/2 ; 0)
Hoành độ giao điểm của hai đường thẳng:
-2x + 1 = 2x + 5 ⇔ 4x = -4 ⇔ x = -1
Tung độ giao điểm của hai đường thẳng:
y = -2(-1) + 1 = 2 + 1 = 3
Vậy tọa độ giao điểm của hai đường thẳng là (-1; 3).
Đồ thị:
Trên mặt phẳng tọa độ Oxy, cho đường thẳng \(d:2x+4y+1=0\) . Đường thẳng d' song song với đường thẳng d và tạo với tia Ox, Oy một tam giác có diện tích bằng 1. Tìm pt tổng quát của đường thẳng d'
Trong hệ trục oxy, cho điểm A(-1,1) và đường thẳng D:2x-4y+1=0
1)Viết phương trình tổng quát của đường thẳng d đi qua A và song song với đường thẳng D
2)Tìm tọa độ điểm M trên đường thẳng D sao cho AM nhỏ nhất
1,\(\overrightarrow{n}\)d=(2;-4)
d: 2(x+1)-4(y-1)=0⇔2x-4y+6=0
2) AM nhỏ nhất khi AM vuông góc với D
⇒\(\overrightarrow{n}\)AM=(4;2)
AM: 4(x+1)+2(y-1)=0⇔4x+2y+2=0
M=AM\(\cap\)D⇒Tọa độ điểm M là nghiệm của hệ:2x-4y=-1
4x+2y=-2
⇒M(-1/2;0)
cho hàm số y=(m-2) x+3 (d1)
a, vẽ đồ thị hàm số khi m=3
b,với m=3 tìm tọa độ giao điểm của 2 đường thẳng (d1) và (d2): y=2x-3
c,với m=3 tìm tọa độ giao điểm của 2 đường thẳng (d1) và (d2): y=2x+2