cho 2 số tự nhiên a và b cm: a^2+b^2 chia hết cho 7 thì a và b chia hết cho 7
cho các số tự nhiên a và b Chứng minh rằng
a) neu a2+b2chia hết cho 3 thì a và b chia hết cho 3
b) nếu a2+b2chia hết cho 7 thì a và b chia hết cho 7
a) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮3\)
=> \(d⋮3\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)
b) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮7\)
=> \(d⋮7\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)
1 cm S=1+2+2^2+...+2^39 chia hết cho 15
2 cm A=a+a^2+a^3+ ...+a^2.n chia hết cho a+1
3 cm tổng 3 số tự nhiên liên tiếp chia hết cho 3
,...... 5.................................................5
4 cho a, b thuộc N và a- b chia hết cho 7. cm 4.a +3.b chia hết cho 7
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
Cho các số tự nhiên a và b . chứng minh rằng :
a, Nếu a2 + b2 chia hết cho 3 thì a và b chia hết cho 3
b,Nếu a2 + b2 chia hết cho 7 thì a và b chia hết cho 7
Câu 1 : Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a - b) chia hết cho 3.
Câu 2 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 7 thì có số dư là 5. Chứng minh rằng (a - b) chia hết cho 7.
Câu 3 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 2 thì có số dư là 1. Chứng minh rằng (a - b) chia hết cho 2
"Các bạn có thể giải 1 trong 3 câu hoặc giải tất cả tùy các bạn !!! Ai nhanh mk tik cho !!"
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
cho các số tự nhiên a và b Chứng minh rằng
a) neu a2+b2chia hết cho 3 thì a và b chia hết cho 3
b) nếu a2+b2chia hết cho 7 thì a và b chia hết cho 7
cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7
Nhận thấy một số chính phương khi chia cho 7 có các số dư: 0,1,2,4. Xét các trường hợp:
+) Nếu một trong 2 số chia hết cho 7 thì hiển nhiên số còn lại cũng chia hết cho 7.
+) Nếu cả 2 số đều không chia hết cho 7, ta thấy trong 3 số 1,2,4 không có 2 số nào có tổng chia hết cho 7 => \(a^2+b^2\) không chia hết cho 7.
Vậy ta có đpcm.
Chứng minh rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3 tổng của 5 số tự nhiên không chia hết cho 5
Bài 2:Chứng minh rằng:
a,Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b,Tổng ba số lẻ liện tiếp không chia hết cho 6
c,nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d, P=a+a^2+a^3+...+a^2n chia hết cho a+1;a,n thuộc N
e, Nếu a và b chia cho 7 có cùng số dư thì hiệu a-b chia hết cho 7
giúp em mới cầu xin đó
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
3. a) Xét hiệu \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮2.3=6\)( tích của 3 số nguyên liên tiếp)
Tương tự: \(b^3-b⋮6\)và \(c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\Rightarrow a^3+b^3+c^3⋮6\Leftrightarrow a+b+c⋮6\)
b) Ta có: \(30=2.3.5\)và 2,3,5 đôi một nguyên tố cùng nhau.
Theo định lý Fermat: \(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\Rightarrow a^5\equiv a^2\equiv a\left(mod2\right)\)
\(a^3\equiv a\left(mod3\right)\Rightarrow a^5\equiv a^3\equiv a\left(mod3\right)\)
\(a^5\equiv a\left(mod5\right)\)
Theo tính chất của phép đồng dư, ta có:
\(a^5+b^5+c^5\equiv a+b+c\left(mod2\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod3\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod5\right)\)
Do đó: \(a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\). Tức là nếu a+b+c chia hết cho 30 thì ....(đpcm)
chứng minh rằng nếu a và b là các số tự nhiên thỏa mãn 5a+3b và 13a+8b cũng chia hết cho 2015 thì a chia hết cho 2015 và b cũng chia hết chia hết cho 2015
2)tìm số tự nhiên n để
(15-2n) chia hết cho (n+1) với n nhỏ hơn hoặc bằng 7
Cho tổng A= 156+273+533+x với x thuộc số tự nhiên .Với điều kiện nào của x để A chia hết cho 13 và A không chia hết cho 13
b , Cho tổng B = 3435 - x với x thuộc số tự nhiên . Với điều kiện nào của x để B chia hết cho 15, b không chia hết cho 15
c , Cho a chia hết cho 7 ,còn b và c chia cho 7 có số dư lần lượt là 2 , 3 .Hỏi dư trong phép chia a +b , b+ c cho 7