Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tăng Phước
Xem chi tiết
Xyz OLM
2 tháng 9 2020 lúc 14:40

a) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮3\)

=> \(d⋮3\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)

b) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮7\)

=> \(d⋮7\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)

Khách vãng lai đã xóa
linhhoang03
Xem chi tiết
Nguyễn Anh
19 tháng 2 2016 lúc 20:28

1.Gộp 3 số vào thành 1 tổng rồi tính:

(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)

=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)

=1*15+2^3*15+...+2^37*15

=15*(1+2^3+...+2^39) chia hết cho 15

Nguyễn Hải An
Xem chi tiết
Châu Capricorn
Xem chi tiết
Nguyễn Thị Hiền
20 tháng 7 2016 lúc 17:06

gọi a=3p+r

b=3q+r

xét a-b= (3p+r)-(3q+r)

=3p + r - 3q - r

=3p+3q =3.(p+q) chia hết cho 3

các câu sau làm tương tự

Nguyễn Thị Hiền
20 tháng 7 2016 lúc 17:06

ủng hộ mik nha

Nguyễn An Ninh
3 tháng 11 lúc 9:08

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

Leo Messi
Xem chi tiết
Cao Loan Anh
Xem chi tiết
Vô Danh
6 tháng 5 2016 lúc 19:05

Nhận thấy một số chính phương khi chia cho 7 có các số dư: 0,1,2,4. Xét các trường hợp:

+) Nếu một trong 2 số chia hết cho 7 thì hiển nhiên số còn lại cũng chia hết cho 7.

+) Nếu cả 2 số đều không chia hết cho 7, ta thấy trong 3 số 1,2,4 không có 2 số nào có tổng chia hết cho 7 => \(a^2+b^2\) không chia hết cho 7.

Vậy ta có đpcm.

Phạm Thanh Hà
Xem chi tiết
Phạm Xuân Sơn
Xem chi tiết
Đặng Ngọc Quỳnh
14 tháng 10 2020 lúc 4:59

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
14 tháng 10 2020 lúc 5:06

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
14 tháng 10 2020 lúc 5:15

3. a) Xét hiệu \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮2.3=6\)( tích của 3 số nguyên liên tiếp)

Tương tự: \(b^3-b⋮6\)và \(c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\Rightarrow a^3+b^3+c^3⋮6\Leftrightarrow a+b+c⋮6\)

b) Ta có: \(30=2.3.5\)và 2,3,5 đôi một nguyên tố cùng nhau.

Theo định lý Fermat: \(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\Rightarrow a^5\equiv a^2\equiv a\left(mod2\right)\)

\(a^3\equiv a\left(mod3\right)\Rightarrow a^5\equiv a^3\equiv a\left(mod3\right)\)

\(a^5\equiv a\left(mod5\right)\)

Theo tính chất của phép đồng dư, ta có:

\(a^5+b^5+c^5\equiv a+b+c\left(mod2\right)\)

\(a^5+b^5+c^5\equiv a+b+c\left(mod3\right)\)

\(a^5+b^5+c^5\equiv a+b+c\left(mod5\right)\)

Do đó: \(a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\). Tức là nếu a+b+c chia hết cho 30 thì ....(đpcm)

Khách vãng lai đã xóa
nghia nghia nghia
Xem chi tiết
Lâm Hà Khánh
Xem chi tiết