c/m rằng 2 đường thẳng cắt 1 đường thăng thứ 3 thì các tia phân giác của 2 góc so le trong với nhau
CM định lý: Nếu 2 đường thẳng song song cắt đường thẳng thứ 3 thì các tia phân giác của 2 góc so le trong song song với nhau
giả sử a//b cắt c tại 2 điểm A và B, d là phân giác góc A, e là phân giác góc B
=> gócA = gócB (so le trong)CHỨNG MINH RẰNG NẾU HAI ĐƯỜNG THẲNG SONG SONG CẮT MỘT ĐƯỜNG THẲNG THỨ BA THÌ CÁC TIA PHÂN GIÁC CỦA HAI GÓC SO LE TRONG SONG SONG VỚI NHAU
Ta có: ab // cd và \(\widehat{aOK}=\widehat{OKd}\)(2 góc so le trong)\(\Rightarrow\frac{1}{2}\widehat{aOK}=\frac{1}{2}\widehat{OKd}\)(1)
Mặt khác: Om là phân giác góc aOK =>\(\widehat{aOm}=\widehat{mOK}=\frac{1}{2}\widehat{aOK}\)(2)
On là phân giác góc OKd =>\(\widehat{nOK}=\widehat{nOd}=\frac{1}{2}\widehat{OKd}\)(3)
Từ (1);(2);(3)\(\Rightarrow\widehat{mOK}=\widehat{nOK}\)=> Om // Kn (2 góc so le trong bằng nhau)
Chứng minh tương tự ta cũng được Og // Oh
Vậy nếu 2 đường thẳng song song cắt 1 đường thẳng thứ 3 thì các tia phân giác của 2 góc so le trong song song với nhau.
Chứng minh rằng nếu hai đường thẳng song song cắt một đường thẳng thứ ba thì các tia phân giác của hai góc so le trong song song với nhau
Vì một đường thẳng cắt hai đường thẳng song song nên các góc sole trong bằng nhau
Vậy tia phân giác của 2 góc so le trong chia 2 góc đó mỗi góc làm 2 góc bằng nhau
Gọi hai góc chung cạnh kết hợp với tia phân giác tạo thành hai góc bằng nhau là A1 và B3
===> A1=B3=1/2 hai góc so le trong bằng nhau
Vậy chúng song song với nhau(đpcm)
Bút danh XXX
cho 1 đường thẳng cắt 2 đường thẳng song song. chứng minh rằng:
a) các tia phân giác của 2 cặp góc so le ngoài thì song song với nhau.
b) các tia phân giác của 1 cặp góc ngoài cùng phái thì vuông góc với nhau.
Chứng minh rằng nếu hao đường thẳng song song cắt một đường thẳng thứ ba thì các tia phân giác của hai góc so le trong song song với nhau
Nếu 2 đường thẳng song song cắt một đường thẳng thứ ba thì các tia phân giác của hai góc so le trong song song với nhau
===================
giả sử a//b cắt c tại 2 điểm A và B, d là phân giác góc A, e là phân giác góc B
=> gócA = gócB (so le trong)
=> A1 = B1
mà A1 và B1 là 2 góc so le trong của d và e
=> d//e (đpcm)
Chứng minh rằng: Nếu một đường thẳng c cắt hai đưởng thẳng a và b thì các tia phân giác của các góc đồng vị, các tia phân giác của các góc so le trong song song với nhau
gips mình với
chứng minh rằng nêus hai đường thẳng song song cắt 1 đường thẳng thứ 3 thì các tia phân giác cuả góc so le trong song song với nhau
mình cần gấp ai đngs mình tick
Hình tự vẽ:
Giả sử a//b cắt c tại 2 điểm A và B, d là phân giác góc A, e là phân giác góc B
=> gócA = gócB (so le trong)
=> A1 = B1
mà A1 và B1 là 2 góc so le trong của d và e
=> d//e (đpcm)
Chứng minh rằng:
Nếu một đường thẳng c cắt hai đưởng thẳng a và b thì các tia phân giác của các góc đồng vị, các tia phân giác của các góc so le trong song song với nhau
Chứng minh rằng Nếu hai đường thẳng song song cùng cắt đường thẳng thứ ba thì hai tia phân giác của một cặp góc so le trong song song với nhau
+ a // b
∠ aAb slt ∠ cBA
=> ∠ aAb = ∠ cBA (tc) (1)
+ AI là pg của ∠ aAB => ∠ A1 = ∠ aAB : 2 (2)
+ BX là pg của ∠ cBA => ∠ B1 = ∠ cBA : 2 (3)
(1)(2)(3) => ∠ A1 = ∠ B1 mà ∠ A1 slt ∠ B1
nên BX // AI