{1-1/2}x{1-1/3}x{1-1/4}x{1-1/5}x......x{1-1/2017}x{1-1/2018}
Tìm x,biết:
x+2015/5 + x+2014/6 = x+2017/3 + x+2018/2
Hướng dẫn: x+2015/5+1 + x+2014/6+1 = x+2017/3+1 + x+2018/2+1
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
A=(1-1/2)x(1-1/3)x(1-1/4)x...(1-1/2017)x(1-1/2018)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2017}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\)
\(A=\frac{1}{2017}\)
\(\frac{1-1}{2}.\frac{1-1}{3}.\frac{1-1}{4}......\frac{1-1}{2017}.\frac{1-1}{2018}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}........\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
Nguyễn Phương Uyên hình như bạn lộn đề thì phải ? đề là 2018 mà bn lại ghi 2017 !!??
tìm x e Q
a) \(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
b) \(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
c) \(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
Tính ( càng nhanh càng tốt )
Bài 1 :
1, ( 1/2 + 1 ) . ( 1/3 + 1 ) . ( 1/4 + 1 ) . ( 1/5 + 1 ) x .. x ( 1/2017 + 1 )
2, ( 1/2 - 1 ) . ( 1/3 - 1 ) . ( 1/4 - 1 ) x ... x ( 1/2018 - 1 ) !!
Ai nhanh tíck hạn chót sáng mai !!
1,
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{2017}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\)
\(=\frac{2018}{2}=1009\)
2,
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-2017}{2018}\)
\(=\frac{-1\cdot2017}{2018}=\frac{-2017}{2018}\)
tinh :
A= ( 1-1/2) x ( 1-1/3) x ( 1-1/4) +.....+ ( 1-1/2017) x ( 1- 1/2018)
A = (1 - 1/2) x (1 - 1/3) x (1 - 1/4) + ... + (1 - 1/2017) x (1 - 1/2018)
<=> A = 1/2 x 2/3 x 3/4 x ... x 2016/2017 x 2017/2018
<=> A = \(\dfrac{1\times2\times3\times...\times2016\times2017}{2\times3\times4\times...\times2017\times2018}\)
<=> A = \(\dfrac{1}{2018}\)
@Nguyễn Linh Ly
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2017}\right)\left(1-\dfrac{1}{2018}\right)\)\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2016}{2017}.\dfrac{2017}{2018}\)
\(A=\dfrac{1.2.3....2016.2017}{2.3.4....2017.2018}\)
\(A=\dfrac{1}{2018}\)
Tim x
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
2/ tim x
\(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7} +\frac{x+2018}{8}\)
3/ tim x
\(\frac{1}{3}+\frac{1}{6}+\frac{99}{101}+\frac{1}{15}+... +\frac{1}{x\left(2x+1\right)}=\frac{1}{10}\)
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
Cảm ơn bạn rất nhiều mình đã hiểu rồi
Chúc bạn học tốt nhé
Tính giá trị của các biểu thức
A = 1+2+3+ ... +2018
B = 1 + 3 + 5 + ... + 2017
C = 2 + 4 + 6 + ... + 2018
D = 1 + 4 + 7 + ... + 2005
E = 1 x 2 + 2 x 3 + 3 x 4 + ... + 2000 x 2001
A = 1 + 2 + 3 + ... + 2018
= ( 1 + 2018 ) + ( 2 + 2017) + ... + ( 1009 + 1010 )
= 2019 + 2019 + ... + 2019 ( có 1009 số 2019 )
= 2019 x 1009 = 2037171
B = 1 + 3 + 5 + ... + 2017
= ( 1 + 2017 ) + ( 3 + 2015 ) + ... + ( 1007 + 1010) + 1009
= 2018 + 2018 + ... + 2018 + 1009 (có 504 số 2018)
= 2018 x 504 + 1009 = 1018081
Còn lại làm giống ý trên .
Tìm x biết
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)
\(\Leftrightarrow\)\(x+1=2019\)
\(\Leftrightarrow\)\(x=2019-1\)
\(\Leftrightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2017)(x+2018)
Tính tổng
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2017)(x+2018)
Giải:\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+....+\frac{1}{\left(x+2017\right)\left(x+2018\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+..........+\frac{1}{x+2017}-\frac{1}{x+2018}\)
\(=\frac{1}{x}-\frac{1}{x+2018}\)
Vậy........................................