Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Anh
Xem chi tiết
luong nguyen phat
Xem chi tiết
Đỗ Đạt
10 tháng 8 2016 lúc 13:33

diện tích hình thang = (đáy lớn + đáy bé)chiều cao : 2 = (2+4)x2:2= 6 cm^2

Đỗ Đạt
10 tháng 8 2016 lúc 13:36

\(\frac{1}{2}\)x2(2+4)=6(cm^2(

KUDO SHINICHI
1 tháng 9 2016 lúc 13:01

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 1 2017 lúc 17:00

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình thang cân ABCD ( AB//CD ) có Dˆ = 600

Theo định nghĩa và giả thiết về hình thang cân ta có: Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Do góc A và góc D là hai góc cùng nằm một phía của

Nguyễn Mai Phương
Xem chi tiết
Nguyễn Minh Phong
Xem chi tiết
KUDO SHINICHI
1 tháng 9 2016 lúc 13:07

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

Rulumi Vichiha
Xem chi tiết
Juvia Lockser
20 tháng 7 2018 lúc 21:46

A B D H C

Juvia Lockser
20 tháng 7 2018 lúc 22:12
Kẻ đoạn thẳng BH xuống đoạn thẳng CD => BH=3cmBH = 3cm => BH = AB = AD => Tứ giác ABDH là hình vuông =>BH = DH và DH = 3cmMà DH + HC = DC => HC = DC - DH = 6cm - 3cm =3m => BH= HC (=DH)BH = HC => Tam giác BHC cân tại H => góc HBC = góc BCH Mà BH vuông góc với CD =>  goc BHC = 90o=> goc HBC = BCH = (180o - 90o) : 2 = 45o => góc C cần tìm = 45o

Mặt khác, tổng 4 góc trong một tứ giác = 360o  => góc B = 360o - góc A - góc D - góc C = 360o - 90o - 90o - 45= 135o

Vậy góc B= 135o ; góc C =45o

Nguyễn Minh Phong
Xem chi tiết
KUDO SHINICHI
1 tháng 9 2016 lúc 13:03

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

thay đổi thông tin đi

nguyenthithuan
Xem chi tiết
Bùng nổ Saiya
Xem chi tiết
Lê Thảo Linh
Xem chi tiết