F= 1+2+2mu 2+.....+2mu 9
chứng tỏ rằng A=2+2mu 2+2mu 3 +...+2mu 9+ 2mu 10 chia hết cho 3 và 31
\(A=2+2^2+2^3+....+2^{10.}\)
\(2A=2\left(2+2^3+...+2^{10}\right)\)
\(2A=2^2+2^3+...+2^{10}+2^{11}\)
\(2A-A=2^{11}-2\)
\(A=2^{11}-2\)
\(A=2048-2\)
\(A=2046\)
Vì tổng các chữ số trong số 2046 là 2 + 0 + 4 + 6 = 12
Mà 12 chia hết cho 3 nên suy ra A chia hết cho 3
Vì 2046 : 31 = 66 => A chia hết cho 31
A = 2mu 0 + 2 mu 1 + 2mu 2 + ...+ 2 mu 50
A= \(2^0+2^1+2^2+...+2^{50}\)
\(\Rightarrow\)2A =2(\(2^0+2^1+2^2+...+2^{50}\))
\(\Rightarrow\)2A= \(2+2^2+2^3+2^4+...+2^{51}\)
\(\Rightarrow\)2A-A= (\(2+2^2+2^3+2^4+...+2^{51}\))-(\(2+2^2+2^3+2^4+...+2^{50}\))
\(\Rightarrow\)A= \(2^{51}-1\)
A = 2mu 0 + 2 mu 1 + 2mu 2 + ...+ 2 mu 50
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016 < 0,2
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016<0,2
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016<0,2
\(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{2014}}-\frac{1}{2^{2016}}\)
\(\Rightarrow2^2A=1-\frac{1}{2^2}+\frac{1}{2^4}-\frac{1}{2^6}+\frac{1}{2^8}-...+\frac{1}{2^{2012}}-\frac{1}{2^{2014}}\)
\(\Rightarrow2^2A+A=1+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{2014}}-\frac{1}{2^{2014}}\right)-\frac{1}{2^{2016}}\)
\(\Rightarrow5A=1-\frac{1}{2^{2016}}< 1\Rightarrow A< \frac{1}{5}=0,2\)
đây là toán lớp 2 hả?
đây là toán lớp mấy thế
-9/2mu 2 thành bao nhiêu
TRl
\(\left(\frac{-9}{2}\right)^2=\frac{81}{4}\)
ht
\(\frac{-9}{2}\)mũ 2=\(\frac{81}{4}\)
( -9/2 mu 2 =81/4
bai1 12mu n+1 + 11mu n+2 chia hết cho 133
bai2 3mu n+2 -2mu n+2 + 3 mu n -2mu n
(5 mu 4 + 4 mu 7) (8 mu9 - 2mu 7) (2mu 4-4 mu 2)