phan tich da thuc thanh nhan tu : x^3 + 3xy+y^3 -1
Phan tich da thuc thanh nhan tu:
x^3 - x + 3x^2y + 3xy^2 + y^3 - y
x^2 + 5x - 6
x^3 - x + 3x^2y + 3xy^2 + y^3 - y
=x3+y3+3x2y+3xy2-x-y
=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)
=(x+y)(x2-xy+y2+3xy-1)
=(x+y)(x2+2xy+y2-1)
=(x+y)[(x+y)2-1]
=(x+y)(x+y-1)(x+y+1)
x^2 + 5x - 6
=x2-x+6x-6
=x.(x-1)+6.(x-1)
=(x-1)(x+6)
Phan tich da thuc thanh nhan tu:
a)3x^2+22xy+11x+37y+7y^2+10
b)x^3+3xy+y^3–1
phan tich da thuc thanh nhan tu
X3_X+3X2Y+3XY2+Y3-Y
x3-x+3x2y+3xy2+y3-y
=x2(x-1)+3(x2y+xy2)+y2(y-1)
=x2(x-1)+3(x2.y+y2.x)+y2(y-1)
=x2(x-1)+3{[x(x+1)+y(y+1)]}+y2(y-1)
=x2(x-1)+3.x(x+1)+3.y(y+1)+y2(y-1)
=x2(x-1)+2x2+3.x(x+1)+3.y(y+1)+y2(y-1)+2y2-2x2-2y2
=x2(x+1)+3.x(x+1)+3.y(y+1)+y2(y+1)-2x2-2y2
=(x2+3)(x+1)+(y2+3)(y+1)-2(x2+y2)
ta có : (x*3+3x*2y+3xy*2+y*3)-(x+y)
=(x+y)*3-(x+y)
=(x+y)((X+Y)*2-1)
(x+y)(x+y+1)(x+Y-1)
\(x^3-x+3x^2y+3xy^2+y^3-y=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
=\(\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\cdot\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\cdot\left(x+y+1\right)\cdot\left(x+y-1\right)\)
phan tich da thuc thanh nhan tu
6x2 - 3xy + x + y -1
Phan tich da thuc sau thanh nhan tu :
x3-x+3x2y+3xy2+y3
6x2-5x-3xy+10x
phan tich da thuc thanh nhan tu
\(=6x^2+5x-3xy\)
\(=x\left(6x+5-3y\right)\)
phan tich da thuc thanh nhan tu x^3 +y^3-z^3+3xyz
\(x^3+y^3+z^3-3xyz\) \(=\left(x+y\right)^3-3x^2y-3xy^2+z^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
HỌC TỐT NHA!
ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
- Hình như đề của u sai hay sao á :)))
phan tich da thuc thanh nhan tu (x-y).z^3 +(y-z).x^3 +(z-y).y^3
X^3+Y^3+Z^3-3xyz
phan tich da thuc thanh nhan tu