Chứng minh rằng đa thức (x + y)6 + (x - y)6 chia hết cho đa thức x2 + y2.
Chứng minh rằng đa thức \(\left(x+y\right)^6+\left(x-y\right)^6\) chia hết cho đa thức \(x^2+y^2\)
\(\left(\left(x+y\right)^2\right)^3+\left(\left(x-y\right)^2\right)^3\)
\(=\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=\left(2x^2+2y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=2\left(x^2+y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)⋮\left(x^2+y^2\right)\)
\(\left(x+y\right)^6+\left(x-y\right)^6\)
\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)
\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left(...\right)\)
\(=\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\left(...\right)\)
\(=\left(2x^2+2y^2\right)\left(...\right)\)
\(=2\left(x^2+y^2\right)\left(...\right)⋮x^2+y^2\left(đpcm\right)\)
Chứng minh rằng đa thức ( x + y)6 + ( x - y)6 chia hết cho đa thức x2 + y2
GIÚP MK NHA
1) Chứng minh rằng đa thức (x+y)6+(x-y)6 chia hết cho đa thức x2+y2
2) Tìm dư của phép chia đa thức f(x) cho x2-1 với: f(x)=x50x+49+x48+...+x2+x+1
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
cho đa thức A=x3+x2y-xy2-y3+x2z-y2z
1. phân tích đa thức thành nhân tử
2. chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì giá trị đa thức B=A-3xyz cũng chia hết cho 6
Chứng minh rằng: Nếu x, y,z là các số nguyên và x+y+z chia hết cho 6
thì giá trị của đa thức A=(x-y)(x+y)(x+y+z) -3xyz chia hết cho 6
\(\left(x+y+z\right)⋮6\Rightarrow\left(x+y+z\right)⋮2\)
x, y, z không thể đồng thời cả 3 số cùng lẻ ; nghĩa là phải có 1 số chẵn
\(\left\{{}\begin{matrix}\left(x.y.z\right)⋮2\Rightarrow3\left(xyz\right)⋮6\\\left(\left(x-y\right)\left(x+y\right)\left(x+y+z\right)\right)⋮6\end{matrix}\right.\)
\(\Rightarrow A⋮6\Rightarrow dpcm\)
Câu 11: Thực hiện phép chia đa thức x2 – 6x + 15 cho đa thức x – 3 được dư là A.15 B.6 C. -15 D.-6
Câu 12: Kết quả của phép chia 3x(4x2 -y2): (2x- y) là:
A. 2x + y B. – 2x + y C. 6x2 - 6xy D. 3x (2x + y)
Câu 11: Thực hiện phép chia đa thức x2 – 6x + 15 cho đa thức x – 3 được dư là A.15 B.6 C. -15 D.-6
Câu 12: Kết quả của phép chia 3x(4x2 -y2): (2x- y) là:
A. 2x + y B. – 2x + y C. 6x2 - 6xy D. 3x (2x + y)
chứng minh rằng; đa thức sau không âm với mọi gtrị của x và y
X2+y2-2xy+x-y+1
Cho đa thức A=(x+y)(y+z)(z+x) + xyz
a) Phân tích A thành nhân tử
b) Chứng minh nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A - 3xyz chia hết cho 6