Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thaoperdant
Xem chi tiết
Dũng Nguyễn
Xem chi tiết
hung nguyen
Xem chi tiết
Vicky Lee
20 tháng 9 2019 lúc 19:49

Với n=1 (tính tay ra) đúng 
Với n=2 (tính tay ra) đúng 
Với n=3 (tính tay ra) đúng. 
Giả sử phương trình trên đúng với n=k, nếu nó cũng đúng với n=k+1 thì phương trình đúng. 
1.1! + 2.2!+...+k*k!=(k+1)!-1 (theo giả thiết trên). 
Phải chứng minh:1.1! + 2.2!+...+k*k! + (k+1)*(k+1)!=(k+1+1)!-1 
<=> (k+1)!-1+(k+1)*(k+1)!=(k+2)!-1 
<=> (k+1)! + (k+1)*(k+1)!=(k+2)! 
<=>(k+1)!*(1+k+1)=(k+2)! 
<=>(k+2)!=(k+2)! Điều này luôn đúng. 
Vậy đẳng thức đã được chứng minh.

Đức Vương Hiền
Xem chi tiết
Akai Haruma
20 tháng 2 2019 lúc 23:27

Lời giải:
\(S=1.1!+2.2!+3.3!+...+n.n!\)

\(=(2-1).1!+(3-1).2!+(4-1).3!+...+(n+1-1).n!\)

\(=2.1!-1!+3.2!-2!+4.3!-3!+...+(n+1)n!-n!\)

\(=2!-1!+3!-2!+4!-3!+....+(n+1)!-n!\)

\(=(2!+3!+...+(n+1)!)-(1!+2!+....+n!)\)

\(=(n+1)!-1\)

Kẻ giấu mặt
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Méo nhóc đáng yêu
Xem chi tiết
Kaneki Ken
15 tháng 11 2015 lúc 17:06

254

Tick ủng hộ nhé !!!

Im Yoon Ah
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết