phân tích các đa thức sau thành nhân tử: d) 3a^5 - 48 ab^8
Phân tích các đa thức sau thành nhân tử:
a/ 3a+3b - a^2 -ab
Ta có:A= 3a+3b-a^2-ab
=>A= (3a-a^2)+(3b-ab)
=>A= a(3-a)+b(3-a)
=>A= (a+b)(3-a)
Phân tích các đa thức sau thành nhân tử
d ) ( y 3 + 8 ) + ( y 2 – 4 )
d) (y3 + 8) + ( y2 – 4) =(y3 + 23) + ( y2 – 22)
= (y + 2)(y2 – 2y + 4) + (y + 2)( y – 2)
= (y + 2)(y2 – 2y + 4 + y – 2) = (y + 2)(y2 – y + 2)
Phân tích các đa thức sau thành nhân tử:
a) x 2 +2x-8; b) x 2 +5x + 6;
c) 4 x 2 -12x + 8; d) 3 x 2 +8xy + 5 y 2 .
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức sau thành nhân tử: 4a³ - 3a + 1
\(4a^3-3a+1\)
\(=\left(4a^3-4a\right)+\left(a+1\right)\)
\(=4a\left(a^2-1\right)+\left(a+1\right)\)
\(=4a\left(a-1\right)\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(4a^2-4a+1\right)\)
\(=\left(a+1\right)\left(2a-1\right)^2\)
Phân tích các đa thức sau thành nhân tử :
a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)
b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(\sqrt{2}.ab+\sqrt{2}.2\right)^2\)
\(=\left(a^2+b^2-5-\sqrt{2}.ab-\sqrt{2}.2\right).\left(a^2+b^2-5+\sqrt{2}.ab+\sqrt{2}.2\right)\)
b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
\(\left(4a^2-3a-18-4a^2-3a\right).\left(4a^2-3a-18+4a^2+3a\right)\)
\(=\left(-6a-18\right).\left(8a^2-18\right)\)
\(=\left(-6\right).\left(a+3\right).2.\left(4a^2-9\right)\)
\(=\left(-12\right).\left(a+3\right).\left(2a-3\right).\left(2a+3\right)\)
a) Xem lại đề
b) ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2
= [ ( 4a2 - 3a - 18 ) - ( 4a2 + 3a ) ][ ( 4a2 - 3a - 18 ) + ( 4a2 + 3a ) ]
= ( 4a2 - 3a - 18 - 4a2 - 3a )( 4a2 - 3a - 18 + 4a2 + 3a )
= ( -6a - 18 )( 8a2 - 18 )
= -6( a + 3 ).2( 4a2 - 9 )
= -12( a + 3 )( 4a2 - 9 )
= -12( a + 3 )( 2a - 3 )( 2a + 3 )
a. ( a2 + b2 - 5 )2 - 2 ( ab + 2 )2
= ( a2 + b2 - 5 )2 - [\(\sqrt{2}\)( ab + 2 ) ]2
= [ a2 + b2 - 5 -\(\sqrt{2}\)( ab + 2 ) ] [ a2 + b2 - 5 +\(\sqrt{2}\)( ab + 2 ) ]
= ( a2 + b2 - 5 -\(\sqrt{2}\)ab - 2\(\sqrt{2}\)) ( a2 + b2 - 5 +\(\sqrt{2}\)ab + 2\(\sqrt{2}\) )
b. ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2
= ( 4a2 - 3a - 18 - 4a2 - 3a ) ( 4a2 - 3a - 18 + 4a2 + 3a )
= ( - 6a - 18 ) ( 8a2 - 18 )
= - 6 ( a + 3 ) . 2 [ ( 2a )2 - 32 ]
= - 12 ( 2a - 3 ) ( 2a + 3 )
Phân tích các đa thức sau thành nhân tử a b - 1 2 + a + b 2
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Phân tích các đa thức sau thành nhân tử:
\(i,a^3-b^3+3a^2+3ab+3b^2\)
\(a^3-b^3+3a^2+3ab+b^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+3\left(a^2+ab+b^2\right)\)
\(=\left(a-b+3\right)\left(a^2+ab+b^2\right)\)