Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê trang
Xem chi tiết
Mai Thị Thanh xuân
Xem chi tiết
Hoàng Minh Tú
Xem chi tiết
Hoàng Minh Tú
26 tháng 7 2018 lúc 12:50

Giúp mình với mình cần gấp

Hoàng Minh Tú
31 tháng 7 2018 lúc 16:12

Giúp mình câu a thôi mình giải đc câu b rồi

Ngự thủy sư
Xem chi tiết
Đen đủi mất cái nik
30 tháng 9 2018 lúc 19:54

Áp dụng bđt Holder ta được:

\(9\left(a^3+b^3+c^3\right)=3.3.\left(a^3+b^3+c^3\right)=\left(1+1+1\right)\left(1+1+1\right)\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3=1\Rightarrow A\ge\frac{1}{9}\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Đen đủi mất cái nik
1 tháng 10 2018 lúc 19:36

c/m bất đẳng thức Holder:

Cho a,b,c,x,y,z,m,n,p là các số thực dương. Khi đó ta có:

\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

Sử dụng bất đẳng thức AM-GM (Cô-si) ta có:

\(\frac{a^3}{a^3+b^3+c^3}+\frac{x^3}{x^3+y^3+z^3}+\frac{m^3}{m^3+n^3+p^3}\ge\frac{3axm}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

Tương tự:

\(\frac{b^3}{a^3+b^3+c^3}+\frac{y^3}{x^3+y^3+z^3}+\frac{n^3}{m^3+n^3+p^3}\ge\frac{3byn}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\frac{c^3}{a^3+b^3+c^3}+\frac{z^3}{x^3+y^3+z^3}+\frac{p^3}{m^3+n^3+p^3}\ge\frac{3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\Rightarrow3\ge\frac{3axm+3byn+3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\Leftrightarrow\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}\ge axm+byn+czp\)

\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

Đẳng thức xảy ra khi các biến bằng nhau

Pé Quỷ Cưng
Xem chi tiết
Evie Nguyễn
Xem chi tiết
huongff2k3
Xem chi tiết
missing you =
18 tháng 7 2021 lúc 11:06

\(=>A+B-C+D=a+b-5-b-c+1-b+c+4+b-a\)

\(=-5+4=-1\)

Dưa Hấu
18 tháng 7 2021 lúc 11:06

undefined

Bui Trinh Minh Ngoc
Xem chi tiết
giải pt bậc 3 trở lên fr...
26 tháng 7 2018 lúc 13:51

a)

\(x^2-5x+4x-20=0.\)

\(x^2-x-20=0\)

\(\left(x^2-x+\frac{1}{4}\right)-20-\frac{1}{4}=0\)

\(\left(x-\frac{1}{2}\right)^2-\left(\frac{20.4+1}{4}\right)=0\)

\(\hept{\begin{cases}x-\frac{1}{2}-\left(\frac{20.4+1}{4}\right)=0\\x-\frac{1}{2}+\left(\frac{20.4+1}{4}\right)=0\end{cases}}\)

b)  \(x^2+6x-7x-42=0\)

\(x^2-x-42=0\)

\(x^2-x+\frac{1}{4}-42-\frac{1}{4}=0\)

\(\left(x-\frac{1}{2}\right)^2-\left(\frac{42.4+1}{4}\right)=0\)  " tương tự con A

\(x^3-16x=0\)

\(x\left(x^2-16\right)=0\)

\(x=0,+4,-4\)

kudo shinichi
26 tháng 7 2018 lúc 20:37

\(x^3-16x=0\)

\(x.\left(x^2-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)

Vậy \(x=0\)hoặc \(x=\pm4\)

Tham khảo nhé~

Hà Văn Tới
Xem chi tiết
thọ nguyễn quốc
29 tháng 3 2018 lúc 19:32

Vì a,b,c là 3 cạnh tam giác nên a,b,c là 3 số dương 
À mà bạn biết tính chất này chứ a/(a+b+c)<a/(b+c) (Cộng vào mẫu a dương nên nhỏ hơn) 
a/(b+c)<(a+a)/(a+b+c)=2a/(a+b+c) (Cộng cả tử với mẫu với a) 
=> Ta có: a/(a+b+c)<a/(b+c)<2a/(a+b+c) (1) 
Tương tự với b: b/(a+b+c)<b/(a+c)<2b/(a+b+c) (2) 
Tương tự với c: c/(a+b+c)<c/(a+b)<2c/(a+b+c) (3) 
Cộng (1) với (2) và (3) ta được đpcm 
1< a/(b+c) + b/(a+c) + c/(a+b) <2

bạn chỉ cần làm tương tự thôi

Hà Văn Tới
30 tháng 3 2018 lúc 19:50

thank bn nha