Cho A = 1/6.10 + 1/7.9 + 1/8.8 + 1/9.7 + 1/10.6
Chứng minh rằng: A = 1/8 ( 1/6 + 1/7 + 1/8 + 1/9 + 1/10 )
A=1/ 6.10+1/ 7.9+1/ 8.8+1/ 9.7+1/ 10.6
Chứng minh rằng: A=1/8. (1/6+1/7+1/8+1/9+1/10)
A=1/ 6.10+1/ 7.9+1/ 8.8+1/ 9.7+1/ 10.6
Chứng minh rằng: A=1/8. (1/6+1/7+1/8+1/9+1/10)
tính B=1/6.10+1/7.9+1/8.8+1/9.7+1/10.6
tính: 1/6.10 + 1/7.9 + 1/8.8 + 1/9.7 + 1/10.6
Tinh A : B
Cho A = 1/1.2+1/3.4+1/5.6+...+1/9.10 va B =1/6.10+1/7.9+1/8.8+1/9.7+1/10.6
A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/9-1/10
A=1-1/10=9/10
B=1/6.10+1/10.6+1/7.9+1/9.7+1/8.8
B=1/30+2/63+1/64
B=1627/20160
A:B=9/10:1627/20160=1/22400
\(\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\)
\(\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}=\)?
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{9.10}\) và \(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\). Tính A : B
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{9.10}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{10}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{10}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)\)
\(\Rightarrow A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
\(\Rightarrow A=\left(\frac{1}{6}+\frac{1}{10}\right)+\left(\frac{1}{7}+\frac{1}{9}\right)+\frac{1}{8}\)
\(\Rightarrow A=\left(\frac{10}{6.10}+\frac{6}{6.10}\right)+\left(\frac{9}{7.9}+\frac{7}{7.9}\right)+\frac{8}{8.8}\)
\(\Rightarrow A=\frac{16}{6.10}+\frac{16}{7.9}+\frac{8}{8.8}\)
\(\Rightarrow A=8\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right)\)
Ta lại có:
\(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\)
\(\Rightarrow B=\left(\frac{1}{6.10}+\frac{1}{6.10}\right)+\left(\frac{1}{7.9}+\frac{1}{7.9}\right)+\frac{1}{8.8}\)
\(\Rightarrow B=\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\)
Vậy :
\(A:B=8\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right):\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right)=8\)
Vậy \(A:B=8\)
Tính A : B biết:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\) và \(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\)
A = 1/1.2 + 1/3.4 + 1/5.6 + 1/7.8 + 1/9.10
A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 1/8 + 1/9 - 1/10
A = ( 1 + 1/3 + 1/5 + 1/7 + 1/9) - ( 1/2 + 1/4 + 1/6 + 1/8 + 1/10)
A = ( 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10) - 2.( 1/2 + 1/4 + 1/6 + 1/8 + 1/10)
A = ( 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10) - ( 1 + 1/2 + 1/3 + 1/4 + 1/5)
A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
B = 1/6.10 + 1/7.9 + 1/8.8 + 1/9.7 + 1/10.6
16B = 16/6.10 + 16/7.9 + 16/8.8 + 16/9.7 + 16/10.6
16B = 1/6 + 1/10 + 1/7 + 1/9 + 1/8 + 1/8 + 1/9 + 1/7 + 1/10 + 1/6
16B = 2.( 1/6 + 1/7 + 1/8 + 1/9 + 1/10)
8B = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
Ta có A = 8B
=> A : B = 8
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{2}-\frac{1}{10}\)
\(A=\frac{2}{5}\)
\(\text{A = 1/1.2 + 1/3.4 + 1/5.6 + 1/7.8 + 1/9.10 }\)
\(\text{= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 1/8 + 1/9 - 1/10
}\)\(\text{= ( 1 + 1/3 + 1/5 + 1/7 + 1/9) - ( 1/2 + 1/4 + 1/6 + 1/8 + 1/10)}\)
= ( 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10) - 2.( 1/2 + 1/4 + 1/6 + 1/8 + 1/10)
= ( 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10) - ( 1 + 1/2 + 1/3 + 1/4 + 1/5)
= 1/6 + 1/7 + 1/8 + 1/9 + 1/10
B = 1/6.10 + 1/7.9 + 1/8.8 + 1/9.7 + 1/10.6 16
= 16/6.10 + 16/7.9 + 16/8.8 + 16/9.7 + 16/10.6 16
= 1/6 + 1/10 + 1/7 + 1/9 + 1/8 + 1/8 + 1/9 + 1/7 + 1/10 + 1/6
= 2.( 1/6 + 1/7 + 1/8 + 1/9 + 1/10)
= 1/6 + 1/7 + 1/8 + 1/9 + 1/10
Ta có A = 8B => A : B = 8