Cho x thuộc Z Tìm GTNN P=14-x/a-x
Tìm GTNN của P=\(\frac{14-x}{4-x}\)(x thuộc Z)
\(P=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}=1+\frac{10}{4-x}\)
Để P đạt GTNN <=> \(1+\frac{10}{4-x}\) đạt GTLN
Nhưng để \(1+\frac{10}{4-x}\) đạt GTLN <=> \(4-x\) đạt GTNN
<=> \(4-x=1\Leftrightarrow x=3\)
Vậy suy ra: \(P_{max}=1+\frac{10}{1}=11\) khi và chỉ khi x = 3
MMS_Hồ Khánh Châu:
\(\frac{10}{4-x}\)lớn nhất
\(\Leftrightarrow\)4-x là số nguyên dương nhỏ nhất ( vì x thuộc Z )
<=> 4-x=1
<=> x=3
..............
Cho A = \(\frac{x-13}{x+3}\)
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để A đạt GTNN
\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)
Cho A = \(\frac{10x+13}{2x+4}\)
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để A đạt GTNN
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
giúp mình nha
B1tìm x thuộc Z
a) -5x+15=-4x-(-9)
b)|x+3|+120=310:2
B2 Cho x thuộc Z biết
A=|x-3|+1328 tìm GTNN của A
Bài 1 tìm x dễ lắm bạn tự làm được
Bài 2 :
Ta có :
\(\left|x-3\right|\ge0\) \(\left(\forall x\in R\right)\)
\(\Rightarrow\)\(\left|x-3\right|+1328\ge1328\) ( cộng hai vế cho 1328 )
Dấu "=" xảy ra khi \(0+1328=1328\)
\(\Rightarrow\)\(\left|x-3\right|=0\)
\(\Rightarrow\)\(x-3=0\)
\(\Rightarrow\)\(x=3\)
Vậy \(A_{min}=1328\) khi \(x=3\)
Chú thích :
\(A_{min}\) là giá trị nhỏ nhất của A
\(\forall x\in R\) là với mọi x thuộc tập hợp số thực
Chúc bạn học tốt ~
- 5x + 15 = - 4x - ( - 9 )
- 5x + 15 = - 4x + 9
- 5x + 4x = - 15 + 9
- 1x = - 6
=> x = 6