Tiếp câu b bài trc nà!
b, Q=3x^3yz–2xyz(x+y-z)+x(y+z)
Tìm số nguyên x,y,z biết 2xyz - 3yz = 3 - 2x - 2z
pt <=> yz 2x - 3 =3 - 2x - 2z
=> 2x - 3 chia hết cho z
=> 2x - 3= k.z , k thuộc Z
pt <=> y. k = -k -2 (vì z=0 Không thỏa mãn)
2 chia hết cho k => k= 1 ; -1 ; 2 ; -2
* k = 1 => y=-3 , z = 1 ; x=2
* k= -1 => y=1; z = 1; x=1
* k=2 => y = -2 ; z = 1 , x =5/2(loại)
* k = -2 => y= 0 ; z = 0 ; x= 3/2 (loại)
Chắc là bài này là dạng toán Phương trình. Có j sai sót mong bạn thông cảm.
Tìm số nguyên x,y,z biết 2xyz - 3yz = 3 - 2x - 2z
pt <=> yz(2x-3) = 3-2x - 2z
=> 2x-3 chia hết cho z
=> 2x - 3 =k.z, k thuộc Z
=> pt <=> y.k = -k - 2 (vì z=0 không thỏa mãn)
=> 2 chia hết k => k= 1; -1; -2; 2
* k=1 => y=-3; z=1; x=2
* k=-1 => y=1; z=1; x=1
* k=2 => y=-2; z=1; x=5/2 (loại)
* k=-2 => y=0; z=0; x=3/2 (loại)
bạn nguyễn thành vinh làm chưa hết đáp án
(x;y;z)=(1;1;1),(-1,-1,2),(-3;1;2);(1;-3;0),(3,-1,1),(-1;3;3)
Tìm số nguyên x,y,z biết 2xyz - 3yz = 3 - 2x - 2z
Tìm số nguyên x,y,z thỏa mãn 2xyz - 3yz = 3 - 2x - 2z (ai làm được giúp cái)
1) Rút gọn các phân thức sau
a) A = \(\frac{\left(x+y+z\right)^2-3xy-3yz-3xz}{9xyz-3x^2-3y^2-3z^2}\)
b) B = \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3-\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\)
b) Ta có nhận xét này nếu a+b+c=0 thì\(a^3+b^3+c^3=3abc\) (nếu cần chứng minh thì hỏi sau nhé)
Khi đó: tử=(x-y)(y-z)(z-x)
Mẫu nó cứ thế nào ấy. Rút gọn cũng chỉ được một chút thôi, chẳng gọn lắm
a) chịu chưa nghĩ ra
Tìm số nguyên x,y,z thỏa mãn 2xyz - 3yz = 3 - 2x - 2z
Tìm số nguyên x,y,z thỏa mãn 2xyz - 3yz = 3 - 2x - 2z
Tìm số nguyên x,y,z thỏa mãn 2xyz - 3yz = 3 - 2x - 2z
1) Rút gọn các phân thức sau
a) A = \(\frac{\left(x+y+z\right)^2-3xy-3yz-3xz}{9xyz-3x^2-3y^2-3z^2}\)
b) B = \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3-\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\)