Tìm min của biểu thức sau \(x+y+\dfrac{6}{x}+\dfrac{24}{y}\) biết x,y>0;x+y<=6
cho : x,y,z ≥0 và x+y+z≤3
tìm min của biểu thức: A=\(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x+1}+\frac{x+1}{4}\geq 1$
$\frac{1}{y+1}+\frac{y+1}{4}\geq 1$
$\frac{1}{1+z}+\frac{1+z}{4}\geq 1$
Cộng theo vế:
$A+\frac{x+y+z+3}{4}\geq 3$
$\Rightarrow A\geq 3-\frac{x+y+z+3}{4}\geq 3-\frac{3+3}{4}=\frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Dự đoán điểm rơi \(x=y=z=1\)
Khi đó \(\dfrac{1}{1+x}=\dfrac{1}{1+1}=\dfrac{1}{2}\) và \(1+x=1+1=2\)
Ta cần ghép Cô-si \(\dfrac{1}{1+x}\) với \(k\left(1+x\right)\) sao cho đảm bảo đấu "=" xảy ra khi \(x=1\)
Đồng thời khi Cô-si 2 số dương trên thì dấu "=" xảy ra khi \(\dfrac{1}{1+x}=k\left(1+x\right)\Leftrightarrow\dfrac{1}{2}=k.2\Leftrightarrow k=\dfrac{1}{4}\)
Như vậy, áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{1}{1+x}\) và \(\dfrac{1+x}{4}\), ta có \(\dfrac{1}{1+x}+\dfrac{1+x}{4}\ge2\sqrt{\dfrac{1}{1+x}.\dfrac{1+x}{4}}=1\)
Tương tự, ta có \(\dfrac{1}{1+y}+\dfrac{1+y}{4}\ge1\) và \(\dfrac{1}{1+z}+\dfrac{1+z}{4}\ge1\)
Cộng vế theo vế của các BĐT vừa tìm được, ta có \(A+\dfrac{x+y+z+3}{4}\ge3\)\(\Leftrightarrow A\ge3-\dfrac{x+y+z+3}{4}\)
Lại có \(x+y+z\le3\) nên \(A\ge3-\dfrac{x+y+z+3}{4}\Leftrightarrow A\ge3-\dfrac{3+3}{4}=\dfrac{3}{2}\)
Vậy GTNN của A là \(\dfrac{3}{2}\) khi \(x=y=z=1\)
Tìm min \(P=x^2+4y^2+\dfrac{75}{x}+\dfrac{1}{y}\). Biết \(x,y>0;x+y>=6\)
\(2P=2x^2+8y^2+\dfrac{150}{x}+\dfrac{2}{y}\)
\(=\dfrac{7}{5}x^2+7y^2+\left(\dfrac{3}{5}x^2+\dfrac{75}{x}+\dfrac{75}{x}\right)+\left(y^2+\dfrac{1}{y}+\dfrac{1}{y}\right)\)
Ta có: \(\left(5+1\right)\left(x^2+5y^2\right)\ge5\left(x+y\right)^2\Rightarrow\dfrac{7\left(x^2+5y^2\right)}{5}\ge\dfrac{7\left(x+y\right)^2}{6}\ge42\)
\(\Rightarrow2P\ge42+3\sqrt[3]{\dfrac{3.75^2.x^2}{5x^2}}+3\sqrt[3]{\dfrac{y^2}{y^2}}=90\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(5;1\right)\)
1. tìm min của hàm số \(P=\dfrac{1}{x}+\dfrac{2}{1-x}\)với 0 < x < 1
2. tìm max của biểu thức \(P=\dfrac{xy\sqrt{z-1}+yz\sqrt{x-2}+zx\sqrt{y-3}}{xyz}\)với x >=2; y>=3; z >=1
1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3
= 1-x/x + (2-2(1-x))/1-x + 3
= 1-x/x + 2x/1-x + 3 >= 2√2 + 3
Dấu "=" xảy ra khi x =√2 - 1
2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)
=> P = √z-1 / z + √x-2 / x + √y-3 / y
= a/a^2+1 + b/b^2+2 + c/c^2+3
a^2+1 >= 2a => a/a^2+1 <= 1/2
b^2+2 >= 2√2 b => b/b^2+2 <= 1/2√2
c^2+3 >= 2√3 c => c/c^2+3 <= 1/2√3
=> P <= 1/2 + 1/2√2 + 1/2√3
Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3
<=> z-1 = 1, x-2 = 2, y-3 = 3
<=> x=4, y=6, z=2
Cho x,y>1 thỏa mãn : \(x+y\le4\).Tìm min của biểu thức :
\(A=\dfrac{x^4}{\left(y-1\right)^2}+\dfrac{y^4}{\left(x-1\right)^4}\)
\(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left\{{}\begin{matrix}a;b>0\\a+b\le2\end{matrix}\right.\)
\(A=\dfrac{\left(a+1\right)^4}{b^2}+\dfrac{\left(b+1\right)^4}{a^2}\ge\dfrac{1}{2}\left[\dfrac{\left(a+1\right)^2}{b}+\dfrac{\left(b+1\right)^2}{a}\right]^2\)
\(A\ge\dfrac{1}{2}\left[\dfrac{\left(a+b+2\right)^2}{a+b}\right]^2\ge\dfrac{1}{2}\left[\dfrac{8\left(a+b\right)}{a+b}\right]^2=32\)
Tìm min của biểu thức \(x+y+\frac{6}{x}+\frac{24}{y}\)
biết x,y dương;x+y<=6
hãy tìm giá trị của x trong các biểu thức sau biết x thuộc Z : \(\dfrac{2}{x}+\dfrac{1}{y}=3\) ; \(\dfrac{2}{y}-\dfrac{1}{x}=\dfrac{8}{xy}+1\) ; \(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\) ; \(\dfrac{-3}{y}-\dfrac{12}{xy}=1\) ; \(\dfrac{x}{8}-\dfrac{1}{y}=\dfrac{1}{4}\).
help me pls!
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)
\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)
\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)
\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
2x - 21 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
y + 1 | -14 | 14 | -7 | 7 | -2 | 2 | -1 | 1 |
x | 11 | 10 | loại | loại | 14 | 7 | loại | loại |
y | -15 | 13 | loại | loại | -3 | 1 | loại | loại |
A) Tìm các số nguyên x và y biết:
\(\dfrac{2}{3}\) + \(\dfrac{1}{x}\) = \(\dfrac{y}{6}\) (x ≠ 0)
B) Cho A=4+42+43+...+42021+42022
1)Thu gọn biểu thức A.
2)Biểu thức A có chia hết cho 20 không? Vì sao?
Cho \(x,y>0;x+y=1\) . Tìm Min \(P=\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)-\dfrac{17}{6}\)
usechatgpt init successLời giải:
Áp dụng BĐT AM-GM:
$1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$P=x^2y^2+\frac{1}{x^2y^2}+2-\frac{17}{6}$
$=x^2y^2+\frac{1}{x^2y^2}-\frac{5}{6}$
$=(x^2y^2+\frac{1}{256x^2y^2})+\frac{255}{256x^2y^2}-\frac{5}{6}$
$\geq 2\sqrt{\frac{1}{256}}+\frac{255}{256.\frac{1}{4^2}}-\frac{5}{6}=\frac{731}{48}$
Vậy $P_{\min}=\frac{731}{48}$ khi $x=y=\frac{1}{2}$