Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhã Doanh
Xem chi tiết
Nguyễn Thị Huyền Trang
26 tháng 5 2017 lúc 19:28

Ta có: \(x=2011\Rightarrow x+1=2012\)

Khi đó, ta có:

\(H\left(x\right)=x^4-\left(x+1\right).x^3+\left(x+1\right).x^2-\left(x+1\right).x+2012\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+2012\)

\(\Rightarrow H\left(2011\right)=-2011+2012=1\).

Vậy \(H\left(2011\right)=1\)

Nguyễn Huy Tú
26 tháng 5 2017 lúc 19:39

Cách 2:

\(H\left(x\right)=x^4-2012x^3+2012x^2-2012x+2012\)

\(=x^4-2011x^3-x^3+2011x^2+x^2-2011x-x+2011+1\)

\(=x^3\left(x-2011\right)-x^2\left(x-2011\right)+x\left(x-2011\right)-\left(x-2011\right)+1\)

\(=\left(x^3-x^2+x-1\right)\left(x-2011\right)+1\)

\(\Rightarrow H\left(2011\right)=1\)

Vậy...

Nịna Hatori
26 tháng 5 2017 lúc 18:38

H(x) = 2012

dia fic
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:00

Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)

Hoàng Ngọc Tuyết Nung
Xem chi tiết
Dương Ngọc Minh
Xem chi tiết
bui huynh nhu 898
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
alibaba nguyễn
29 tháng 12 2016 lúc 19:18

Ta có

\(\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\)

Từ đó ta suy ra

\(x+\sqrt{x^2+2012}=\frac{2012}{y+\sqrt{y^2+2012}}=\sqrt{y^2+2012}-y\left(1\right)\)

Tương tự

\(y+\sqrt{y^2+2012}=\frac{2012}{x+\sqrt{x^2+2012}}=\sqrt{x^2+2012}-x\left(2\right)\)

Cộng (1) và (2) vế theo vế ta được

x + y = 0

alibaba nguyễn
29 tháng 12 2016 lúc 19:30

Bạn cứ lấy (1) cộng (2) vế theo vế rồi rút gọn là thấy ah

Kudo Shinichi
Xem chi tiết
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 22:02

Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)

Áp dụng ta có : 

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)

\(=1+1+...+1\)(Có tất cả 1006 số 1)

\(=1006\)

Nguyễn Ngọc Linh Nhi
16 tháng 10 2016 lúc 15:17

sai rồi bạn ơi

Vũ Ngọc Duy Anh
Xem chi tiết
Girl
8 tháng 7 2019 lúc 12:46

\(x=1-\sqrt{2012}\Leftrightarrow1-x=\sqrt{2012}\)

\(\Leftrightarrow\left(1-x\right)^2=2012\Leftrightarrow x^2-2x-2011=0\)

Ta có: 

\(A=\left(x^5-2x^4-2012x^3+3x^2+2009x-2012\right)^{2012}\)

\(A=\left[\left(x^5-2x^4-2011x^3\right)-\left(x^3-2x^2-2011x\right)+\left(x^2-2x-2011\right)-1\right]^{2012}\)

\(A=\left[\left(x^3-x+1\right)\left(x^2-2x-2011\right)-1\right]^{2012}=1\)