A=1.2.3+2.3.4+3.4.5+...99.100.101.Tính A. Mơn nhiều ^_^
tính tổng: A= 1.2.3+2.3.4+3.4.5+...+99.100.101
1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)
2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)
3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)
.................
99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)
C = 1.2.3+2.3.4+3.4.5+.........+99.100.101
C= 1/4 . (99.100.101.102 - 98.99.100.101)
CHUC BN HOK GIỎI!
Tính : \(A=1.2.3+2.3.4+3.4.5+.....+99.100.101\)
A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101
4A = 4.(1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101)
= 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 99.100.101.(102-98)
= 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + 3.4.5.6 - 3.4.5.6 + ... + 98.99.100.101 - 98.99.100.101 + 99.100.101.102
4A = 99.100.101.102
A = 99.100.101.102 : 4
A = 25497450
Tính: 1/1.2.3+1/2.3.4+1/3.4.5+...+1/99.100.101
Đặt A=1/1.2.3+1/2.3.4+...+1/99.100.101
2A=2/1.2.3+2/2.3.4+...2/99.100.101
2A=3-1/1.2.3+4-2/2.3.4+...+101-99/99.100.101
2A=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+101/99.100.101-99/99.100.101
2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/99.100-1/100.101
2A=1/2-1/10100
Tính \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{99.100.101}\)
=1+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{2}\) -\(\frac{1}{3}\) -\(\frac{1}{4}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{100}\)-\(\frac{1}{101}\)
=1+\(\frac{1}{101}\)
=\(\frac{102}{101}\)
1/1.2.3 = 1/2 .[1/1.2 - 1 / 2.3]
1/2.3.4 = 1/2[ 1/2- 1/3 ]
...................
1/99.100.101 = 1/2[ 1/99. 100 - 1/100.101]
=> A= 1/2 [ 1/1.2- 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/ 4.5 +.........+ 1/99 .100 - 1/100. 101]
A = 1/2 . [1/1.2 -1/100 .101]
A= 1/2 . 5049 /10100 = 5049 / 20200.
Mình nghĩ là vậy đó.
a) b=1/3+1/15+1/35+...+1/97.99
b) c=2/1.2.3+2/2.3.4+2/3.4.5+...+2/98.99.100
c) d=5/2.3.4+5/3.4.5+...+5/98.99.100+5/99.100.101
GIẢI GIÚP MÌNH THEO CÁCH HỌC CỦA LỚP 6 VỚI Ạ. CẢM ƠN MỌI NGƯỜI NHIỀU!
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
Tính nhanh: S = 2/ 1.2.3 + 2/ 2.3.4 + 2/3.4.5 + ....... + 2/ 99.100.101
Tính nhanh: S = 2/1.2.3 + 2/2.3.4 + 2/3.4.5+.........+ 2/99.100.101
1.2.3+2.3.4+3.4.5+..+99.100.101
Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)
\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)
\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)
\(=99.100.101.102-0.1.2.3\)
\(=101989800\)
\(\Rightarrow A=101989800:4=25497450\)
Vậy \(A=25497450.\)
1.2.3+2.3.4+3.4.5+.........+99.100.101
Đặt A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ... + 99.100.101.(102-98)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> 4A = 101989800
=> A = 25497450