Cho a/a'+ b'/b =1 và b/b'+ c'/c=1 (b khác 0).
Chứng minh: abc+ a'b'c'=0
Cho a' , b , b' , c là 4 số khác 0 và \(\frac{a}{a'}+\frac{b'}{b}=1và\frac{b}{b'}+\frac{c'}{c}=1.\)Chứng minh rằng abc + a'b'c' = 0
Ta có : \(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\Rightarrow ab+a'b'=a'b\Rightarrow abc+a'b'c=a'bc\left(1\right)\\\frac{b}{b'}=\frac{c'}{c}\Rightarrow bc+b'c'=b'c\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\end{cases}}\)
Từ (1) và (2) ta có đpcm
Cho a', a, b, b' là 4 số khác 0 và a:a' + b:b'=1 b:b' + c:c'=1
Chứng minh abc + a'b'c'=0
Nguyễn Khánh Ngân
\(\frac{a}{a'}+\frac{b'}{b}=1\Rightarrow\frac{a}{a'}.\frac{b}{b'}=\frac{b}{b'}\Rightarrow\frac{ab}{a'b'}+1=\frac{b}{b'}=1-\frac{c}{c'}\)
\(\Rightarrow\frac{ab}{a'b'}=-\frac{c'}{c}\Rightarrow abc=-a'b'c\Rightarrow abc+a'b'c'=0\)
Câu hỏi của vuong thi minh anh - Toán lớp 7 - Học toán với OnlineMath
Biết a/a'+b/b+a'b'c'=0'=1 và b/b'+c/c'=1. Chứng minh rằng abc
a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc (1) (vì c # 0)
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c (2) (vì a' # 0)
(1) + (2) => đpcm
mk làm mà sai thì kệ nhá ^^
a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc ﴾1﴿ ﴾vì c # 0﴿
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c ﴾2﴿ ﴾vì a' # 0﴿ ﴾1﴿ + ﴾2﴿ => đpcm
Biết a : a' + b' :b =1 và b : b' + c' : c =1 . Chứng minh rằng abc + a'b'c' = 0
A / A' + B' / B=1 --->AB + A'B' = A'B (1)
B / B' + C'/ C=1--->BC +B'C' = B'C(2)
nhan 2 ve cua pt 1 cho C
nhan 2 ve cua pt 2 cho A'
Cộng hai vế của pt (1) và (2) rồi triệt tiêu ta sẽ có kết quả. tự giải nhé
cho a/a'=b/b'=c/c'=1
chứng minh rặng abc+a'b'c'=0
Bạn ghi đề bị sai rồi, phải là abc-a'b'c'=0 mới đúng!
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=1\Rightarrow\frac{abc}{a'b'c'}=1^3=1\Leftrightarrow abc=a'b'c'\Rightarrow abc-a'b'c'=0\)
Biết a/a'+b/b'=1 va b/b'+c'/c=1
chứng minh :abc+a'b'c'=0
Cho \(\frac{a}{a'}+\frac{b'}{b}=1\) và \(\frac{b}{b'}+\frac{c'}{c}=1\)chứng minh abc+a'b'c'=0
Cho a/a'+b'/b=1; b/b'+c'/c=1. Chứng minh rằng abc+a'b'c'=0
Answer:
Ta có:
\(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\\\frac{b}{b'}+\frac{c'}{c}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab+a'b'=a'b\\bc+b'c'=b'c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab=a'b-a'b'\\b'c'=b'c-bc\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}abc=a'bc-a'b'c\\a'b'c'=a'b'c-a'bc\end{cases}}\)
Vậy \(abc+a'b'c'=0\)
Biết a/a'+b'/b=1; b/b'+c'/c=1.Chứng minh rằng: abc+a'b'c'=0
(Nhanh lên giùm nha! Xin cảm ơn)