Mn ơi cho tôi hỏi bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) có tên gọi là gì vậy ạ
Chứng mình bất đẳng thức
1/\(\frac{1}{4}\left(\frac{x}{y}+\frac{y}{z}\right)\ge\frac{x}{y+z}\)
2/\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Mình mới làm quen với bất đẳng thức, các bạn giải chi tiết hộ mình nha. À mà giải theo Cauchy ý nha !
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
CM bất đẳng thức :
\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\ge\frac{x}{y+z}\)
Ta có:
\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\) (*)
Theo bất đẳng thức Cauchy, có: \(y+z\ge2\sqrt[]{yz}\)(1)
Và \(\frac{1}{y}+\frac{1}{z}\ge2.\frac{1}{\sqrt{yz}}=\frac{2}{\sqrt{yz}}\) (2)
Nhân (1) với (2) ta được: \(\left(y+z\right)\left(\frac{1}{y}+\frac{1}{z}\right)\ge2\sqrt{yz}.\frac{2}{\sqrt{yz}}=4\)
=> \(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) Thay vào (*) ta được:
\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x}{4}.\frac{4}{y+z}=\frac{x}{y+z}\)
=> \(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\ge\frac{x}{y+z}\left(đpcm\right)\)
cho bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng bất đẳng thức trên tìn giá trị nhỏ nhất của\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
với x,y dương và x+y=1
Ta có $P=\dfrac{x^2}{y-1}+ \frac{y^2}{x-1}$.
Áp dụng BĐT AM-GM ta có $1 \cdot (y-1) \le \frac{y^2}{4} \Rightarrow \frac{x^2}{y-1} \ge \frac{4x^2}{y^2}$.
Tương tự thì $\frac{y^2}{x-1} \ge \frac{4y^2}{x^2}$. Vậy $P \ge \dfrac{4x^2}{y^2}+ \frac{4y^2}{x^2} \ge 8$ theo BĐT AM-GM.
Dấu đẳng thức xảy ra khi và chỉ khi $x=y=2$. $\blacksquare$
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Chứng minh bất đẳng thức sau với x,y,z dương \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\ge\frac{9}{2\left(x+y+z\right)}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)
Cho x,y là số thực dương, thỏa mãn x+y=1.
Tìm giá trị nhỏ nhất của \(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
( Làm theo cách dùng bất đẳng thức cô si í ạ... Thank mn)
Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)
\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)
Lại có:
\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)
Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)
Dấu "=" xảy ra tại x=y=1/2
Chứng minh bất đẳng thức: \(\frac{1}{x^2}+\frac{1}{y^2}\ge\left(\frac{1}{a}+\frac{1}{b}\right)^2vớix,y,a,b\ne0và\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
Chứng minh bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y>0, suy ra: \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\le1\)với \(x+y\le1\).
Mình đang cần chứng minh phần sau nhé :))
Theo AM-GM , có :
\(x+y\ge2\sqrt{xy}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)
Nhân vế theo vế :
\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Kurosaki Akatsu mình đang cần chứng minh phần sau nhé:))
Bạn ơi đề có nhầm không chứ khi dấu = xảy ra tức là a=b=1/2 thì Bt có Gt là 4 rồi