Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Duy Phúc
Xem chi tiết
Trần Hữu Ngọc Minh
14 tháng 12 2017 lúc 18:40

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

Ngô Duy Phúc
Xem chi tiết
Bùi Thế Hào
16 tháng 12 2017 lúc 11:50

Ta có: 

\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)  (*)

Theo bất đẳng thức Cauchy, có: \(y+z\ge2\sqrt[]{yz}\)(1)

Và \(\frac{1}{y}+\frac{1}{z}\ge2.\frac{1}{\sqrt{yz}}=\frac{2}{\sqrt{yz}}\) (2)

Nhân (1) với (2) ta được: \(\left(y+z\right)\left(\frac{1}{y}+\frac{1}{z}\right)\ge2\sqrt{yz}.\frac{2}{\sqrt{yz}}=4\)

=> \(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) Thay vào (*) ta được:

\(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)=\frac{x}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x}{4}.\frac{4}{y+z}=\frac{x}{y+z}\)

=> \(\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\ge\frac{x}{y+z}\left(đpcm\right)\)

Le vi dai
Xem chi tiết
Hiền Nguyễn
Xem chi tiết
Vinh Nguyễn Thành
Xem chi tiết
Nguyễn Thành Trương
29 tháng 4 2019 lúc 15:20

Hỏi đáp Toán

ank viet
Xem chi tiết
Lightning Farron
26 tháng 12 2016 lúc 17:42

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)

\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)

Dấu "=" xảy ra khi \(x=y=z\)

Diệp Nhi
Xem chi tiết
zZz Cool Kid_new zZz
10 tháng 3 2020 lúc 15:28

Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)

Lại có:

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)

Dấu "=" xảy ra tại x=y=1/2

Khách vãng lai đã xóa
Dương Ngọc Minh
Xem chi tiết
Dương Ngọc Minh
Xem chi tiết
Kurosaki Akatsu
5 tháng 8 2017 lúc 21:12

Theo AM-GM , có :

\(x+y\ge2\sqrt{xy}\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)

Nhân vế theo vế :

\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Dương Ngọc Minh
5 tháng 8 2017 lúc 21:21

Kurosaki Akatsu​   mình đang cần chứng minh phần sau nhé:))

Hoàng Minh Hoàng
5 tháng 8 2017 lúc 21:34

Bạn ơi đề có nhầm không chứ khi dấu = xảy ra tức là a=b=1/2 thì Bt có Gt là 4 rồi