Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Trương Thúy Vy
Xem chi tiết
Cậu Bé Ngu Ngơ
20 tháng 12 2017 lúc 19:11

Ta có\(\hept{\begin{cases}\left|x-2011\right|\ge2011-x,\forall x\\\left|x-211\right|\ge x-211,\forall x\end{cases}}\)

\(\Rightarrow A\ge1800.\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2011\le0\\x-211\ge0\end{cases}}\)

\(\Rightarrow211\le x\le2011\)

Vậy.............

Trịnh Trương Thúy Vy
20 tháng 12 2017 lúc 19:14

Vậy GTNN của biểu thức bằng 1800 hả

Vũ Ngọc Mai
Xem chi tiết
Loan Phan
6 tháng 3 2017 lúc 20:49

\(\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=x+25+\dfrac{144}{x}\)

Ta có:

x+\(\dfrac{144}{x}\)\(\ge\)2\(\sqrt{x.\dfrac{144}{x}}\)=2.12=24(dựa vào định lí côsi)

\(\Leftrightarrow\)x+25+\(\dfrac{144}{x}\)\(\ge\)24+25=49

Vậy GTNN của A là 49

Nguyễn Ngọc Bảo Châu
6 tháng 3 2017 lúc 12:36

49

Trần Duy
Xem chi tiết
T.Thùy Ninh
27 tháng 6 2017 lúc 10:59

\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=\dfrac{x^2}{x}+\dfrac{25x}{x}+\dfrac{144}{x}=x+25+\dfrac{144}{x}\)\(x>0;\dfrac{144}{x}>0\Rightarrow x+\dfrac{144}{x}>0\)

Áp dụng bất đẳng thức AM - GM \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{x.\dfrac{144}{x}}=\sqrt{144}=12\Rightarrow x+\dfrac{144}{x}\ge12.2=24\)Ta có:

\(A=x+25+\dfrac{144}{x}\ge24+25=49\)

Vậy : \(Min_A=49\)

Đẳng thức xảy ra khi và chỉ khi :

\(x=\dfrac{144}{x}\Rightarrow x^2=144\Rightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\)

\(x>0\Rightarrow x=12\)

Phạm Phương Linh
Xem chi tiết
Trên con đường thành côn...
4 tháng 8 2021 lúc 21:10

undefined

Nguyễn Hoàng Dương
11 tháng 4 lúc 21:42

kẻ lười biếng nạp card, đi ô tô

Trần Bích Ngân
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 7 2020 lúc 21:16

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
21 tháng 7 2020 lúc 21:01

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
21 tháng 7 2020 lúc 21:05

1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
pham trung thanh
Xem chi tiết
DanAlex
14 tháng 4 2017 lúc 21:40

Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa

Ta có: \(a^2\ge0\forall a\)

\(b^2\ge0\forall b\)

GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất

GTNN của \(a^2;b^2\)là 0

\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)

Vậy GTNN của P là 0

pham trung thanh
14 tháng 4 2017 lúc 21:46

a;b là hằng số dương mà bạn

Kiệt Nguyễn
10 tháng 2 2020 lúc 19:17

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

(Dấu "="\(\Leftrightarrow x=\frac{a}{a+b};y=\frac{b}{a+b}\))

Khách vãng lai đã xóa
HỒ TÚ ANH
Xem chi tiết
Trần Khánh Quyên
Xem chi tiết
Đoàn Đức Hà
3 tháng 8 2021 lúc 21:45

\(P=x+y+\frac{9}{x}+\frac{16}{y}=x+\frac{9}{x}+y+\frac{16}{y}\ge2\sqrt{x.\frac{9}{x}}+2\sqrt{y.\frac{16}{y}}=14\)

Dấu \(=\)khi \(x=3,y=4\).

Khách vãng lai đã xóa
Đoàn Đức Hà
3 tháng 8 2021 lúc 21:45

Có thể đề bài đúng phải là điều kiện \(x+y\le4\).

Ta có: 

\(P=x+y+\frac{9}{x}+\frac{16}{y}=\frac{49}{16}x+\frac{9}{x}+\frac{49}{16}y+\frac{16}{y}-\frac{33}{16}\left(x+y\right)\)

\(\ge2\sqrt{\frac{49}{16}x\times\frac{9}{x}}+2\sqrt{\frac{49}{16}y\times\frac{16}{y}}-\frac{33}{16}\times4\)

\(=\frac{21}{2}+14-\frac{33}{4}=\frac{65}{4}\)

Dấu \(=\)khi \(\hept{\begin{cases}\frac{49}{16}x=\frac{9}{x}\\\frac{49}{16}y=\frac{16}{y}\\x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{7}\\y=\frac{16}{7}\end{cases}}\).

Khách vãng lai đã xóa
Nguyễn Quốc Gia Huy
Xem chi tiết
alibaba nguyễn
21 tháng 8 2017 lúc 11:59

Cách 1:

\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)

\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)

Vậy GTNN là 8 đạt được tại x = 2

alibaba nguyễn
21 tháng 8 2017 lúc 12:02

Cách 2: 

\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)

\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)

Dấu = xảy ra khi x = 2

Vũ Xuân Phương
21 tháng 8 2017 lúc 12:10

với x = -1 thì A= -19 đáp án của bạn sai rùi tính lại đi (^-^)