A= 3/1.4+ 3/4.7+ 3/7.10+...+ 3/27.30
Tính B = \(\frac{3}{1.4}\)+ \(\frac{3}{4.7}\)+\(\frac{3}{7.10}\)+.....+\(\frac{3}{27.30}\)
\(B=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+........+\frac{1}{27.30}\right)\)
\(B=3.\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......-\frac{1}{27}+\frac{1}{27}-\frac{1}{30}\right)\)
\(B=1.\left(\frac{1}{1}-\frac{1}{30}\right)\)
\(B=\frac{29}{30}\)
B =\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
B = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{27}-\frac{1}{30}\)
B =\(\frac{1}{1}-\frac{1}{30}\)
B =\(\frac{29}{30}\)
Ta có:
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}\)
Vậy \(B=\frac{29}{30}\)
tính tổng
a)\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
b)\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
c)\(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{7.10}+...+\frac{2}{93.95}\)
a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)
=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))
= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))
=9(1-\(\frac{1}{100}\))
A=\(\frac{891}{100}\)
b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)
=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))
=1-\(\frac{1}{30}\)
B=\(\frac{29}{30}\)
a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)
\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9.\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)
\(=1-\dfrac{1}{30}\)
\(=\dfrac{29}{30}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{27.30}\)
Đặt : \(A=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{27\cdot30}\)
\(A=\frac{1}{3}\left(\frac{5}{1}-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+...+\frac{5}{27}-\frac{5}{30}\right)\)
\(A=\frac{1}{3}\left(5-\frac{5}{30}\right)\)
\(A=\frac{1}{3}\cdot\frac{29}{6}\)
\(A=\frac{29}{18}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+....+\frac{5}{27.30}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{30-27}{27.30}\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}\cdot\frac{29}{30}=\frac{29}{18}\)
1.
a) 1/1.4+1/4.7+1/7.10+...+1/100.103
b)-1/3+-1/15+-1/35+-1/63+...+-1/9999
2.
3/1.4+3/4.7+3/7.10+...+3/94.97+3/97.100
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
A= 3/1.4 + 3/4.7 + 3/7.10 +...+ 3/40.43
A = 1/1 -1/4 +1/4 - 1/7 +1/7 ........+1/40 - 1/43
A = 1/1 - 1/43
A = 42/43
A=1 - 1/4 + 1/4 - 1/7 + .... + 1/40 - 1/43
= 1 - 1/43
= 42/43
So sánh A với 1, biết A= 3/1.4+3/4.7+3/7.10+....+3/61.64+3/64.67
( 31/1.4= 31 trên 3.4)
\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}+\dfrac{3}{64\cdot67}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\)
\(A=1-\dfrac{1}{67}\) < 1
=> A<1
Ta có:
\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{61.64}+\dfrac{3}{64.67}\)
\(=3.\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\right)\)
\(=3.\left(1-\dfrac{1}{67}\right)\)
\(=3.\dfrac{66}{67}\)
\(=\dfrac{198}{67}\)
Vì \(\dfrac{198}{67}\) có tử lớn hơn mẫu nên \(\dfrac{198}{67}>1\)
Vậy \(A>1\)
sửa bài:
... \(=1-\dfrac{1}{67}\)
\(=\dfrac{66}{67}\)
Vì \(\dfrac{66}{67}\) có tử nhỏ hơn mẫu nên \(\dfrac{66}{67}< 1\)
Vậy \(A< 1\)
3/1.4 + 3/4.7 + 3/7.10 + ... + 3/94.97
`3/1.4+3/4.7+3/7.10+...+3/94.97`
`=1/1-1/4+1/4-1/7+1/7-1/10+...+1/94-1/97`
`=1-1/97`
`=96/97`
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\\ =1-\dfrac{1}{97}=\dfrac{96}{97}\)
A=3/1.4+3/4.7+3/7.10+3/11.14+3/14.17
Sửa lại đề : \(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.14}+\frac{3}{14.17}\)
\(A=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.14}+\frac{3}{14.17}\right)\)
\(A=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)\)
\(A=\frac{3}{3}\left(1-\frac{1}{17}\right)\)
\(A=\frac{16}{17}\)
P/S : Ở chỗ 3/11.14 có lẽ bạn ghi sai đề , mình nghĩ là 3/10.14 mới đúng
Sửa lại đề : A=31.4+34.7+37.10+310.14+314.17A=31.4+34.7+37.10+310.14+314.17
A=3.(11.4+14.7+17.10+110.14+314.17)A=3.(11.4+14.7+17.10+110.14+314.17)
A=3.13(1−14+14−17+17−110+110−114+114−117)A=3.13(1−14+14−17+17−110+110−114+114−117)
A=33(1−117)A=33(1−117)
A=1617A=1617
P/S : Ở chỗ 3/11.14 có lẽ bạn ghi sai đề , mình nghĩ là 3/10.14 mới đúng
Ngu ms đi hỏi câu này
ÓC CHÓ
3/1.4+3/4.7+3/7.10+3/10.13+3/13.6
\(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+\dfrac{3}{13\cdot16}\)
\(=\dfrac{3\cdot1}{1\cdot4}+\dfrac{3\cdot1}{4\cdot7}+\dfrac{3\cdot1}{7\cdot10}+\dfrac{3\cdot1}{10\cdot13}+\dfrac{3\cdot3}{13\cdot16}\)
\(=3\cdot\left(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+\dfrac{1}{10\cdot13}+\dfrac{1}{13\cdot16}\right)\)
\(=3\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)\)
\(=3\cdot\left(1-\dfrac{1}{16}\right)\)
\(=3\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\)
\(=3\cdot\dfrac{15}{16}\)
\(=\dfrac{45}{16}\)